Responsive image
博碩士論文 etd-0809110-170121 詳細資訊
Title page for etd-0809110-170121
論文名稱
Title
利用化學氣相沉積法生長非極性之氧化鋅(11-20)薄膜在(La,Sr)(Al,Ta)O3基板上
Growth of Nonpolar ZnO (11-20) Films on (La,Sr)(Al,Ta)O3 substrate by chemical vapor deposition method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-23
繳交日期
Date of Submission
2010-08-09
關鍵字
Keywords
氧化鋅、非極性
LSAT, A-plane, nonpolar ZnO
統計
Statistics
本論文已被瀏覽 5679 次,被下載 0
The thesis/dissertation has been browsed 5679 times, has been downloaded 0 times.
中文摘要
本文即是以化學氣相沉積(Chemical vapor deposition, CVD)在 (100) LSAT基板上成長非極性(11-20)ZnO氧化鋅薄膜。以Zinc 2,4-pentanedionate monohydrate[Zn(C5H7O2)2.xH2O]作為鋅的前驅物O2/N2的混合氣體當載氣,研究反應壓力、反應溫度對氧化鋅薄膜生長的影響。以X光繞射(XRD)、掃描式電子顯微鏡(SEM)對成長之樣品進行晶體生長方向和表面形貌量測。
在生長溫度在780℃下,生長壓力50torr,(001)LSAT基板磊晶成長(11-20)ZnO薄膜時,由二次電子影像可以發現,不具特定成長方向的六邊形(0002)ZnO;壓力升高到100torr時六邊形(0002)ZnO已經有特定生長方向;150torr 時能觀察到(11-20)ZnO之長方形交錯堆疊。而X光繞射圖(0002)ZnO繞射峰隨著壓力從50torr升到150torr逐漸降低,200torr時則完全無(0002)ZnO繞射峰訊號。
在生長溫度在700℃,生長壓力在200torr時薄膜表面形貌為(0002)ZnO六角形的密集堆疊。隨溫度升高,(0002)ZnO六角形大幅的減少,到750℃時已經能觀察到(11-20)ZnO之長方形交錯堆疊。780℃得到一平整的(11-20)ZnO。X光繞射光譜隨著溫度700℃升至780℃,(0002)ZnO逐漸消失不見,且針對(11-20)ZnO rocking curve的半高寬以780℃時為最低(0.30°)。
本文進一步對a-plane的氧化鋅薄膜,藉由原子力顯微鏡(AFM)、光子激發光分析 (PL)、和穿透式電子顯微鏡(TEM)分析,研究非極性氧化鋅薄膜的表面形貌,光學性質和微觀結構。在橫截面TEM圖中可觀察到基板與薄膜之界面處平整,固推測ZnO薄膜在生長過程中並不會與LSAT基板產生反應。從電子顯微鏡的繞射圖可得知,當(001)LSAT//(11-20)ZnO時,存在[10-10]ZnO//[110]LSAT、[0001]ZnO//[1-10]LSAT的晶向關係。橫截面TEM圖中ZnO薄膜在LSAT上一層一層排列形成類似牙齒的形狀,並這樣交錯堆疊的結構帶來大量的晶界,但是從PL結果顯示這些缺陷似乎未嚴重到影響它的發光性質。
Abstract
In this study, epitaxial ZnO films were grown by chemical vapor deposition (CVD) on LSAT(100) substrate. A high-quality [100] (La0.3,Sr0.7)(Al0.65,Ta0.35)O3 (LSAT) single crystal with the diameter of 60mm was grown by Czochralski pulling technique in our lab. Epi-ready LSAT substrates with rms roughness of 0.30nm ~ 0.35nm were used for all of the experiments. Nonpolar ZnO with [11-20] orientation (a-plane) was directly grown on a (100) LSAT substrate without any buffer layer by chemical vapor deposition (CVD) method. (100) LSAT single crystal substrate is loaded in a 2” quartz tube inserted to a two-temperature zone furnace. Zinc acetylacetonate hydrate (Zn(C5H7O2)2.xH2O, Lancaster) source was vaporized at the lower temperature of 130~140oC. The vapor was carried by a mixture of N2/O2 gas flow into the high temperature zone where the (100) LSAT substrate was located. At first, the pressure of the quartz chamber was pumped to 8×10-3 Torr, and then kept at 150 ~ 250 Torr. The flows rates of both O2 and N2 are 500sccm. During the growth, the temperature was varied from 700 to 780oC. The growth conditions were controlled by adjusting the growth temperatures and chamber’s pressures. The overall reaction was:
Zn(C5H7O2)2 +12O2→ZnO+ 10CO2 +7H2O
Scanning electron microscope [(SEM), JEOL JSM-6330TF)] is used to examine the different surface morphologies of ZnO epitaxial film. The orientation and structure were investigated by X-ray diffraction pattern (XRD) using a Siemens D5000 X-ray diffractometer with a Cu anode at 40 kV and 30 mA. The wavelength of X-ray radiated from the Cu Kα1 is 0.1540 nm. The X-ray scan step is 0.01°. A JEOL 3010 scanning transmission electron microscope (STEM) operated at 200kV was employed to characterize the microstructures and orientation of the nonpolar ZnO film. Cross-sectioned TEM samples were prepared using the focus ion beam lift-out method. A Pt layer of about 8nm in thickness was pre-deposited on the sample to prevent charging. Room temperature photoluminescence (RT-PL) measurements were performed using a 325nm He-Cd laser. The emitted light was detected by a Jobin-Yvon TRIAX 550 monochromator with 0.025nm resolution.
目次 Table of Contents
摘要 III
Abstract V
目錄 VII
圖 目錄 IX
表 目錄 XI
第一章 概論 1
1-1前言 1
1-2 研究動機 2
第二章 文獻回顧 5
2-1 ZnO的結構與性質 5
2-2 LSAT 的結構與性質 7
2-3化學氣相沈積(Chemical Vapor Deposition, CVD) 10
第三章 實驗方試 13
3-1 化學氣相沈積(Chemical Vapor Deposition, CVD) 13
3-2 實驗方法與步驟 13
3-2-1 實驗裝置 13
3-2-2 實驗流程 15
3-3 量測設備簡介 17
3-3-1 X光繞射分析儀(X-ray Diffraction, XRD) 17
3-3-2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 17
3-3-3原子力電子顯微鏡(Atomic Force Microscope, AFM) 17
3-3-4光激發光譜(Photoluminescence Spectroscopy, PL) 18
3-3-5穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 18
第四章 結果與討論 21
4-1生長溫度對氧化鋅薄膜的影響 21
4-1-1掃描式電子顯微鏡(SEM)分析 21
4-1-2 X光繞射(XRD)分析 24
4-2生長壓力對氧化鋅影響 26
4-2-1掃描式電子顯微鏡(SEM)分析 27
4-2-2 X光繞射(XRD)分析 28
4-3光激發光譜(PL)分析 30
4-4原子力顯微鏡(AFM)分析 31
4-5穿透式電子顯微鏡(TEM)觀察與分析 33
第五章 結論 39
參考文獻 41
參考文獻 References
[1] H. Ohta, H. Mizoguchi, M. Hirano, S. Narushima, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 82, (2003) 823.
[2] Y. F. Chen, S. K. Hong, H. J. Ko, M. Nakajima, T. Yao, and Y. Segawa, Appl.
Phys. Lett. 76, (2000) 245.
[3] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, M. Kawasaki, Jpn. J. Appl. Phys., 44, (2005) L643.
[4] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K.Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater., 4, (2005) 42.
[5] K. Yamanouchi, K. Kotani, H. Yao, Jpn. J. Appl. Phys., 37, (1998) 2887.
[6] 林志明 LED產業發展概況 2004/04/15
[7] S. Nakamura, T. Mukai, and M. Senoh . J. Appl. Phys. 76 (12), 15 December (1994)
[8] 鄒軍,周聖明,等. 新型襯底材料γLiAlO2 熱穩定性研究[ J ]. 矽酸鹽學報, 2005, 33 (5) : 564.
[9] Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Resschikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys., 98 (2005) 041301.
[10] S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett.73, (1998) 10.
[11] R. K. Ahrenkiel, Solid State Electron. 35,(1992)239.
[12]C. Liua, Z. Xiea, P. Hana, B. Liua, L. Lia, J. Zoub, S. Zhoub, L. H. Baic, Z. H. Chenc, R. Zhanga and Y. Zhenga. Journal of Crystal Growth., 298, (2007) 228.
[13] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, MReiche, K. H. Ploog, Nature. 406, (2000) 865.
[14] G. Vaschenko, D. Patel, C. S. Menoni, N. F. Gardner, J. Sun, W. Götz, C. N. Tomé, B. Clausen, Phys. Rev. B., 64, (2001) 241308
[15] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, M. Kawasaki, Physica E., 21, (2004) 671
[16] S.S. Lu, InGaAlAs/InP Electro-Absorption Modulator Structures Grown
by Molecular Beam Epitaxy, thesis of NSYSU, 5, 2003.
[17] J. Z. Perez, V. M. Sanjose, E. P. Lidon, J. Colchero, Phys. Rev. Lett., 95, (2005)
226105.
[18] O. Dulub, L. A. Boatner, U. Diebold, Surf. Sci., 519, (2002) 201.
[19] T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, M. Kawasaki, Appl.
Phys. Lett., 84, (2004) 1079.
[20] M.M.C. Chou, L.W. Chang, D.R. Hang, C.L. Chenm D.S. Chang, C.A. Li, Crystal Growth & Design, 9(5), (2009) 2083.
[21] M.M.C. Chou, L.W. Chang, H.Y. Chung, T.H. Huang, J.J. Wu, C.W. Chen, J.
Crystal Growth, 308, (2007), 412.
[22] T. Moriyama, S. Fujita, Jpn. J. Appl. Phys., 44, (2005) 7919.
[23] H. Matsui, H. Tabata, Appl. Phys. Lett., 87, (2005) 143109.
[24] H. Matsui, H. Tabata, J. Appl. Phys., 99, (2006) 124307.
[25] M. M. C. Chou, C. L. Chen, S. S. Yang, C. H. Huang, H. L. Huang, J. Phys. And Chem. of solids, 69, (2008), 425
[26] T. Nakamura, H. Minoura, H. Muto, Thin Solid Films, 405, (2002) 109.
[27] M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng, Z. X. Mei, J. F. Jia, HChen, Q. K. Xue and Z. Zhang, App. Phys. Lett. 87, (2005) 202107.
[28] T. Nakamura, H. Minoura, H. Muto, Thin Solid Films, 405, (2002) 109.
[29]Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, .Avrutin,,S.-J. Cho, and H. Morkoçd J. Appl. Phys. 98, (2005) 041301
[30] Pearson’s Handbook of Crystallographic Data,4795
[31] S.J. Lim, S.-J. Kwon, H. Kim, J.-S. Park, Appl. Phys. Lett. 91 (2007) 183517.
[32] B.J. Kwon, H.S. Kwack, S.K. Lee, Y.H. Cho, D.K. Hwang, S.J. Park, Appl. Phys.
Lett. 91 (2007) 61903.
[33] G. Hu, H. Gong, E.F. Chor, P. Wu, Appl. Phys. Lett. 89 (2006) 242113
[34]D.P. Norton,Y.W. Heo, M.P. Ivill, K.IP,S.J. Rearton, M.F. Chisholm, and T. Steiner, Materials Today, 7 (2004) 34.
[35] D. Mateika, H. Kohler, H. Laudan, E. Volkel, J. Crystal Growth, 109, (1991), 447
[36] Homer Fay, C.D. Brandle, Appl. Phys 38, (1967) 3405.
[37] S. Geller and P.M. Raccah, Phys. Rev.B2, (1970) 1167.
[38] S. Bueble, K.Knorr, E. Brecht, W. Schmahl, Surface Science 400 (1998) 345.
[39] T. Lukasiewicz, M. Swirkowicz, H. Sakowska, A. Turos, M.Leszczynski, R. Ratajczak, J. Cryst. Growth 237–239 (2002) 1118.
[40] H. Li, L. Salamanca-Riba, R. Ramesh, J.H. Scott, J. Mater. Res. 18(7) (2003) 1698.
[41] T. Runka, K. Lapsa, A. Lapinski, R. Aleksiyko, M. Berkowski,M. Drozdowski, J. Mol. Struct. 704 (2004) 281–285.
[42] M. M. C. Chou, C. L. Chen, S. S. Yang, C. H. Huang, H. L. Huang, J. Phys. and Chem. of Solids, 69,(2008) 425.
[43]黃中亨,“以柴式提拉法生長(La,Sr)(Al,Ta)O3單晶與其特性之量測”,國立中山大學材料科學研究所碩士論文,(2006)。
[44] H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition,1999, pp.12-31.
[45] C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, 1990, pp.102-107.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.217.220.114
論文開放下載的時間是 校外不公開

Your IP address is 18.217.220.114
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code