Responsive image
博碩士論文 etd-0809110-235918 詳細資訊
Title page for etd-0809110-235918
論文名稱
Title
內嵌UV雷射點於玻璃導光增亮技術開發
Embedded dots by UV laser technique inside glasses for light guide and brightness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-08-09
關鍵字
Keywords
內嵌微結構、UV雷射、光學設計、導光增亮片、雷射直寫
Laser direct writing, UV laser, Embedded microstructure, Light guide plate, Optical design
統計
Statistics
本論文已被瀏覽 5655 次,被下載 0
The thesis/dissertation has been browsed 5655 times, has been downloaded 0 times.
中文摘要
傳統背光模組所使用之光學膜片通常在表面加工微結構以改變其光學特性,不同於傳統製程在表面製作微結構的方式,本研究提出獨特且新穎的製程,主要使用UV (ultraviolet) 雷射光,以雷射直寫對玻璃內部做內嵌式微結構加工,雷射加工後玻璃與原本玻璃光學特性不同,藉由此特性設計單層或多層微結構於玻璃內部,使入射到玻璃內部的光線可改變出光特性。而設計不同的微結構組合可達到導光兼具聚光或均勻擴散的效果。透過微結構內嵌於玻璃的設計,可有效提升出光效率與出光均勻度,亦可突破傳統光學模組專利的保護範圍。首先由FRED光學模擬軟體模擬光學模組,經由模擬預測內嵌單層及多層微結構排列於玻璃內的光學特性,接著使用雷射頻率為30kHz,脈衝寬度為15ns,雷射能量約2.5到2.6W間的UV雷射參數進行雷射直寫加工。本研究著力於UV雷射點內嵌於玻璃基板其光學性質的探討,探討主要的排列參數(點與點的距離、層與層之間的距離及結構層數)與其光學性質之間的關係。UV雷射直寫突破傳統製程的多道手續以及降低製作較複雜微結構的困難度,而內嵌也使得微結構表面擁有不易受損及汙染等優點。最後以分光色度計(Photo Research PR650)量測不同內嵌微結構排列的試片之優勢與效能以驗證模擬結果。
Abstract
Microstructures are usually fabricated on the surface of optical sheets to improve the optical characteristics. In this study, a new fabrication process with UV (ultraviolet) laser direct writing method is developed to embed microstructures inside the glass. Then the optical properties of glass such as reflection and refraction indexes can be modified. Single- and multi-layer microstructures are designed and embedded inside glasses to modify the optical characteristics. Both luminance and uniformity can be controlled with the embedded microstructures. Thus, the glass with inside pattern can be used as a light guide plate to increase optical performance. First, an optical software, FRED, is applied to design the microstructure configuration. Then, UV laser direct writing with output power: 2.5~ 2.6 W, repetition rate: 30 kHz, wave length: 355nm and pulse duration: 15ns is used to fabricate the microstructures inside the glass. The effect of pattern dimension such as the pitch, the layer gap, and the number of layer on the optical performance is discussed. Machining capacity of UV laser is ranging from micron to submicrometer; hence various dimensions of dot, line width, and layers can be easily embedded in the glass by one simple process. In addition, the embedded microstructures can be fabricated less damage and contamination. Finally, the optical performance of the glasses with various configurations is measured by using Spectra Colorometer (Photo Research PR650) and compared with the simulated results.
目次 Table of Contents
目錄 I
圖目錄 III
表目錄 VI
中文摘要 VII
ABSTRACT VIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3文獻回顧 7
1.4 研究動機與目的 10
第二章 製作原理 12
2.1 光的性質與特性 12
2.2 UV雷射簡介 16
2.3 FRED光學模擬軟體 20
第三章 內嵌微結構的設計與製造 23
3.1 設計製造流程 23
3.2 FRED模擬軟體設定 24
3.2.1 LED光源設定 25
3.2.2 內嵌微結構設定 27
3.2.3 分析面設定 29
3.2.4 微結構模組設置 30
3.3 雷射加工流程與參數設定 38
3.4 量測設置與單位 41
3.4.1 量測設置 41
3.4.2 量測與模擬單位 44
第四章 結果與討論 46
4.1模擬結果 46
4.2 實驗與量測結果 48
4.2.1 初步試驗 48
4.2.2 量測結果 51
4.3 討論 55
4.3.1 模擬結果討論 55
4.3.2 量測結果討論 59
第五章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 67
參考文獻 68
參考文獻 References
1.L. J. Hornbeck, “Digital Light Processing and MEMS: Timely Convergence for a Bright Future”, Texas Instrument Inc, Dallas, Texas, 1997.
2.R. P. Breault, “Control of Stray light”, Handbook of Optics, 2nd ed., McGraw Hill, New York, Vol. 1, 1995.
3.C.H. Chien, Z. P. Chen, “Design and fabrication of the concentric circle light guiding plate for LED-backlight module by MEMS technique”, Microsystem technologies, Vol. 13, pp. 1529-1535, 2007.
4.J. H. Jeong, G. Lee, S. J. Yoon, and D. H. Choi, “Design optimization for optical patterns in a light-guide panel to improve illuminance and uniformity of the liquid-crystal display”, Opt. Eng., Vol. 48, 2009.
5.S. R. Park, O. J. Kwon, D. Shin, and S. H. Song, “Grating micro-dot patterned light guide plates for LED backlights”, Optics Express 2888, Vol. 15, pp. 2888-2899, 2007.
6.C. J. Li1, Y. C. Fang, and M. C. Cheng, “Study of optimization of an LCD light guide plate with neural network and genetic algorithm”, Optics Express 10177, Vol. 17, pp. 10177-10188, 2009.
7.Z. D. Popovic, R. A. Sprague, and G. A. N.Connell, “Technique for the monolithic fabrication of microlens arrays”, Applied Optics, Vol. 27, pp.1281-1284, 1988.
8.M. C. Hutley, “Optical techniques for the generation of microlens arrays”, Journal of Modern Optics, Vol. 37, pp. 253-265, 1990.
9.J. O. Choi, J. A. Morse, J. C. Corelli, J. P Silverman. and H. Bakhru, “Degradation of poly (methylmethacrylate) by deepultraviolet, x-ray, electron beam, and proton beam irradiations”, J. Vac. Sc. Technol. B, Vol. 6, pp. 2286-2289, 1988.
10.N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgon, “Photolytic technique for producing microlenses in photosensitive glass”, Applied Optics, Vol. 24, pp. 2520-2525, 1985.
11.R. Yang and W. Wang, “Out-of-plane polymer refractive microlens fabricated based on direct lithography of SU-8”, Sensors and Actuators A, Vol. 113, pp. 71-77, 2004.
12.D. S. Ko, “A decompression method for the fabrication of polymer microlens arrays”, Infrared Physics & Technology, Vol. 45, pp. 177–180, 2004.
13.H. Ottevaere, B. Volckaerts, J. Lamprecht, J. Schwider, A. Hermanne, I. Veretennicoff and H. Thienpont, “Two-dimaensional plastic microlens arrays by deep lithography with protons: fabrication and characterization”, J. Opt. A: Pure Appl. Opt., Vol. 4, pp. S22–S28, 2002.
14.J. H. Lee, W. S. Choi, K. H. Lee and J. B. Yoon, “A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography”, J. Micromech. Microeng., Vol. 418 , pp. 1-7, 2008.
15.W. Däschner, P. Long, R. Stein, C. Wu and S.H. Lee, “General aspheric refractive micro-optics fabricated by optical lithography using a high energy beam sensitive glass gray-level mask”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, pp. 3730-3733, 1996.
16.W. R. Cox, “Micro-optics fabrication by ink-jet printing”, Optics & Photonics News, pp.32-35, 2001.
17.S. Lazare, J. Lopez, J. M. Turlet, M. Kufner, S. Kufner, and P. Chavel, “Microlenses fabricated by ultraviolet excimer laser irradiation of poly (methyl methacrylate) followed by styrene diffusion”, Appl. Opt., Vol. 35, pp.4471-4475, 1996.
18.H. Yang, C. K. Chao, C. P. Lin and S. C. Shen , “Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers”, J. Micromech. Microeng., Vol. 14, pp.277-282, 2004.
19.A. Y. Smuk, N. M. Lawandy, “Direct laser fabrication of dense microlens arrays in semiconductor-doped glass”, J. Appl. Phys., Vol. 87, pp. 4026-4030, 2000.
20.Y. C. Lee, C. M. Chen and C. Y. Wu, “A new excimer laser micromachining method for axially symmetric 3D microstructures with continuous surface profiles”, Sensors and Actuators A, Vol. 117, pp. 349–355, 2005.
21.H. Nishiyama, M. Mizoshiri, J. Nishii, Y. Hirata, “Nonplanar surface structures of inorganic materials fabricated by femtosecond laser lithography”, Proc. SPIE, Vol. 6883, 2008.
22.H. Nishiyama, M. Mizoshiri, T. Kawahara, J. Nishii, Y. Hirata, “SiO2-based nonplanar structures fabricated using femtosecond laser lithography”, Opt. Exp., Vol. 16, pp. 17288-17294, 2008.
23.H. Nishiyama, J. Nishii, M. Mizoshiri, Y. Hirata, “Microlens arrays of high-refractive-index glass fabricated by femtosecond laser lithography”, Appl. Surf. Sci., Vol. 255, pp. 9750-9753, 2009.
24.S. Kawata, H. B. Sun, T. Tanaka, K. Takada, “Finer features for functional microdevices”, Nature, Vol. 412, pp. 697-698, 2001.
25.J. Serbin, A. Egbert, A. Ostendorf, and B. N. Chichkov, “Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics”, Optics Letters, Vol. 28, pp.301-303, 2003.
26.T. Kim, S. Park, H. Oh, Y. Shin, “Analysis of the laser patterning inside light guide panel”, Optics & Laser Technology, Vol. 39, pp. 1437–1442, 2007 .
27.徐玉麟,陳強智,張聰德,“紫外光雷射切割加工技術之發展現況”,機械工業雜誌, Vol.323, pp. 103-105, 2010.
28.P. R. Willmott, J. R. Huber, “Pulsed laser vaporization and deposition”, Reviews of Modern Physics, Vol. 72, pp. 315-328, 2000.
29.K. Qiu, C. K. S. Leung, R. N. Weinreb, S. Liu, C. Y. L. Chueng, H. Li, M. Z. Zhang, C. P. Pang, D. S. C. Lam, “Predictors of atypical birefringence pattern in scanning laser polarimetry”, Br J Ophthalmol , Vol. 93, pp. 1191-1194, 2009.
30.Y. Kim, S. Kim, H. Jung, E. Lee, J. W Hahn, “Plasmonic nano lithography with a high scan speed contact probe”, Optics Express, Vol. 17, pp.19476-19485, 2009.
31.H. Chen, R. Shepherd, H. K. Chung, A. Kemp, S. B. Hansen, S. C. Wilks, Y. Ping, K. Widmann, K. B. Fournier1, G. Dyer, A. Faenov, T. Pikuz, and P. Beiersdorfer, “Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities”, Phys. Rev. E, Vol. 76, pp. 056402.1-056402.5, 2007.
32.M. C. Kaluza, M. I. K. Santala, J. Schreiber, G. D. Tsakiris and K. J. Witte, “Time-sequence imaging of relativistic laser–plasma interactions using a novel two-color probe pulse”, Applied Physics B: Lasers and Optics, Vol. 92, pp. 475-479, 2008.
33.梁錦宏,天朗照明有限公司,“燭光的故事”,照明的光與色專欄。
34.誠鐿科技,“非成像光學系統模擬設計”,五南圖書出版,2007。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.135.86
論文開放下載的時間是 校外不公開

Your IP address is 3.142.135.86
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code