Responsive image
博碩士論文 etd-0809111-111003 詳細資訊
Title page for etd-0809111-111003
論文名稱
Title
類鑽碳薄膜摻雜氮氣與氨氣性質探討
Characteristics comparison between the doped diamond-like carbon with nitrogen and ammonia
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-18
繳交日期
Date of Submission
2011-08-09
關鍵字
Keywords
摻雜之類鑽碳薄膜、表面結構、沉積速率、奈米壓痕量測、電漿中離子傳輸之鍍膜成長機制
The mechanism of DLC growth by ions transfer in plasma., Nanoindentation, Surface structure, Doped DLC, Doposition rate
統計
Statistics
本論文已被瀏覽 5681 次,被下載 6
The thesis/dissertation has been browsed 5681 times, has been downloaded 6 times.
中文摘要
類碳鑚(DLC)膜在應用及材料理論研究上是一份重要的題材,利用摻雜質於DLC中可改變其薄膜特性亦是近來研究的重點。
本論文利用電漿輔助化學氣相沉積法(PECVD)在矽基板和玻璃基板上沉積DLC,以乙炔作為碳源,探討氮氣及氨氣為摻雜源製作摻氮類碳鑚膜之成長機制及性質差異。DLC薄膜分析以光學薄膜厚度分析儀量測吸收光譜及厚度、以掃描式電子顯微鏡(SEM)觀察DLC表面及剖面結構、傅利葉轉換光譜儀(FTIR)分析樣品鍵結形式及奈米壓痕儀量測薄膜之硬度及楊氏模數。
由奈米壓痕量測分析結果得知,氮氣作為摻雜源時隨氮氣流量增加使得薄膜的硬度由2.5 GPa(1.5 sccm)下降至1.2 GPa(6 sccm),且楊氏係數也由53 GPa(1.5 sccm)下降至45 GPa(1.5 sccm),反之氨氣卻隨氨氣流量增加而硬度1.2 GPa(1.5 sccm)上升至11.6 GPa(6 sccm),則楊氏係數也從53 GPa(1.5 sccm)上升至154 GPa(6 sccm)有增加之趨勢。
由FTIR之穿透光譜可發現DLC之特徵峰: sp2的C=H(2945 cm-1) 和 sp3 C-H(2910 cm-1),並由摻雜之DLC,觀察到摻氮之氮和碳的鍵結模式為sp1的C≡N(2200 cm-1)和sp2的C=N(1625 cm-1),由分析得知,本論文之實驗條件可成功摻氮進入DLC。
由光學測薄膜厚度儀分析NK薄膜特性,發現DLC以氮氣做為摻雜源會因氮氣流量增加使鍍膜率增加,反之摻氨氣之DLC卻隨氨氣流量增加而鍍膜率減少之趨勢。由SEM分析觀察薄膜之表面與剖面結構,剖面結構圖所獲得之膜厚與NK薄膜特性分析儀所得之結果互相吻合。此外SEM分析摻雜源為氮氣之類碳鑽薄膜表面平整,而摻雜源為氨氣之薄膜則較粗糙,因氮氣作為摻雜源時,N2+離子被RF的自我負偏壓反向吸引,薄膜表面沒有受到N2+離子的轟擊,而氨氣作為摻雜源,因NH2-離子被RF的自我負偏壓向下排斥,薄膜表面受到NH2-離子的轟擊造成蝕刻。
由XPS分析得知樣品中sp3 之C-C(285.4 eV)及sp3 之C-N(287.7 eV)的含量會隨著氮氣流量的增加而隨之下降,且sp2 之C=C(284.4 eV)及sp2 之C=N(286.1 eV) 的含量會隨著氮氣流量的增加而隨之上升,而隨著氨氣流量的增加樣品中sp3 之C-C及sp3 之C-N所佔的含量隨之上升,且sp2 之C=C與sp2 之C=N的含量會隨著氨氣流量的增加而下降,類鑽碳膜中氮含量則隨氮氣流量而上升。而其SP2 結構隨氮含量的上升而提升,硬度會隨氮氣流量的提高而下降,這與nano indenter實驗之硬度分析結果有相同特性。
本論文提出一氣體離子在電漿中傳輸反應鍍膜之微觀膜型,探討了氮氣及氨氣製作摻氮之DLC之成長機制與性質差異,實驗結果顯示,氮氣作為摻雜源氮離子被解離為N2+離子,被RF自我負偏壓向上吸引,對於薄膜不會產生轟擊,則氨氣為摻雜源時,氨氣被解離成NH2-離子,會被RF自我負偏壓向上排斥,對於薄膜會產生轟擊。
Abstract
Diamond-liked carbon (DLC) film is an important material and has many application in industry. Recently doping impurity into the DLC to change the properties of DLC thin film is a research topic attracted scientists.
In this thesis, DLC films were deposited by plasma-enhanced chemical vapor deposition (PECVD) on the Si wafer and glass. Acetylene was used as the source of carbon, and nitrogen was doped in DLC need too dopants of grow N2 and NH3. The growth mechanism and differences of the nitrogen doped DLC films were studied by methods of NK measurement, SEM and nano indentation.
The analysis of nano indentation showed that the hardness and Young’s Module decreased with increasing N2 flow rate. However, for increased NH3 a flow rate, the hardness and Young’s Module of DLC were increased.
The characteristic peaks of nitrogen doped DLC in the FTIR transmittance spectra were studied, sp2 C=H bond(2945 cm-1), sp3 C-H bond(2910 cm-1), and also the C≡N (2200cm-1)and C=N bond(1625cm-1) are observed in DLC. The results of FTIR shows nitrogen was doped into DLC successfully.
The DLC thin films thickness was determined by the NK analysis, and it is found the deposition rate of DLC was increased with the increasing flow rate of N2. However, for increased NH3 flow rate, the DLC deposition rate was decreased. From SEM, micrographs the NH3 doped DLC yielded rough morphology. The surface of N2 doped DLC thin film, revealed smoother. A growth mechanism of diamond with different dopant was proposed and explained the properties of DLC thin film with different deposition condition.When N2 was used as dopant source, the N2+ ions were induced by plasma and attracted upward due to the RF self-bias voltage. Therefore ,the surface of thin film was not bombarded due to N2+ ions. On contrast, when the NH3 was used as dopant source, the NH2- ions were produced and distracted downward by the RF self-bias voltage. And then the surface of the thin film was etched by the NH2- ions.
Form the XPS analysis, the composition of sp3 C-C(285.4 eV) and sp3 C-N (287.7 eV)were decreased with increased N2 flow rate.However, the composition of sp3 C-C and SP3 C-N were increased with decreasing the NH3 flow rate. The composition of nitrogen in the DLC film increased with higher N2 flow rate. The number of sp2 bond was increased and the hardness was decreased with higher amount of nitrogen in the DLC film. This result is consistent with the nano indentation,FTIR analysis and explained by the ionic transportation growth mechanism model.
目次 Table of Contents
目錄
摘要 i
Abstract iii
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究目的 1
第二章 基礎理論與文獻回顧 2
2-1 碳材料之簡介 2
2-2 類鑽碳膜的成膜機制 3
2-3 電漿輔助化學氣相沉積法 4
2-4 摻雜氮氣對類鑽碳膜之影響 5
2-5 薄膜分析儀器簡介 8
2-5.1 NK薄膜特性分析儀 8
2-5.2 奈米壓痕量測儀(Nanoindentation) 10
2-5.3 傅立葉轉換紅外光譜(Fourier-Transform Infrared Spectometer) 13
2-5.4 掃瞄式電子顯微鏡[33] 14
2-5.5 X光光電子能譜儀 14
第三章 研究方法與實驗步驟 16
3-1 實驗方法 16
3-1.1 射頻輔助化學氣相沉積(PE-CVD)系統 16
3-1.2 類鑽碳薄膜沉積原料 18
3-2 實驗步驟 18
3-2.1 基材之前處理 18
3-2.2 實驗操作步驟 18
3-2.3 實驗條件 19
第四章 結果與討論 20
4-1 電漿中離子傳輸之鍍膜成長機制膜型 20
4-2 NK薄膜特性分析量測 21
4-3 SEM分析 24
4-4 傅立葉轉換紅外光譜分析 27
4-5 奈米壓痕量測分析 29
4-6 X光光電子能譜分析 32
第五章 結論 42
第六章 參考資料 44

參考文獻 References
第六章 參考資料
[1]John Robertson,“The deposition mechanism of diamond-like a-C and a-C: H ”Diamond Relat Mater, 3 (1994) 361-368.
[2]M.K.Arora ,A.H. Lettington, D.R.Waterman,“Amorphous nitrogen containing carbon films deposited by plasma assisted chemical vapour deposition” Diamond Relat Mater 8 (1999) 623–627.
[3]H.O.Pierson,“Diamond-like carbon (DLC) in Handbook of carbon, graphite, diamond and fullerenes” Noyes publications,(1993). 337-355.
[4]G.H. Johnson, A.R. Badzian and M.W. Geis,“Diamond and Diamond-like Materials Synthesis” MRS Pittsburgh,(1988).
[5]A. C. Ferrari and J. Robertson,“Interpretation of Raman spectra of disordered and amorphous carbon”Phys Rev B 61 (1999) 14095-14107.
[6]Alfred Grill,“Diamond-like carbon: state of the art” Diamond Relat Mater 8 (1999) 428–434.
[7] F. P. Bundy, W. A. Bassett, M. S. Weathers, R. J. Hemley, H. K. Mao, A. F.Goncharov,“The pressure-temperature phase and transformation diagram for carbon”Carbon 34 (1996) 141-153.
[8]Y. Lifshitz“Pitfalls in amorphous carbon studies,” Diamond Relat. Mater. 12 (2003) 130-140.
[9]J. Robertson, Mater,“ Diamond-like amorphous carbon”Sci.and Eng. R37 (2002) 129-281.
[10]翁文毅, 電漿輔助化學氣相沈積法成長改質類鑽碳膜, 國立成功大學碩士論文(2002).
[11] L. G. Jacobsohn and F. L. Freire, Jr, “Growth kinetics and relationship between structure and mechanical properties of a-C(N):H films deposited in acetylene–nitrogen atmospheres” J. Vac. Sci. Technol. A17(1999)545-551.
[12] S. Logothetidis and C. Charitidis ,“Comprehensive study on the properties of multilayered amorphous carbon films” Diamond Relat Mater 9 (2000) 756–760.
[13] F.L. Freire Jr and D.P. Franceschini,“Structure and mechanical properties of hard amorphous carbon-nitrogen films obtained by plasma decomposition of methane-ammonia mixtures” Thin Solid films 293 (1997)236-243.
[14] J. Schwan W and W. Dworschak,“Microstructures and mechanical properties of amorphous hydrogenated carbon-nitrogen films” Diamond Relat Mater 3 (1994) 1034-1039.
[15] W. Lu and K. Komvopoulos,“Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering” J. Appl. Phys (1999)2642-2651.
[16] M. Guerino and M. Massi,“The influence of nitrogen on the dielectric constant and surface hardness in diamond-like carbon (DLC) films” Diamond Relat Mater 13 (2004) 316-319.
[17] Xingbin Yan and Tao Xu,“Study of structure, tribological properties and growth mechanismof DLC and nitrogen-doped DLC films deposited by electrochemical technique” Appl .Surf. Sci. 236 (2004) 328-335.
[18] M. Azzi and P. Amirault,“Corrosion performance and mechanical stability of 316L/DLC coating system:Role of interlayers” Surf & Coat Techn 204 (2010) 3986-3994.
[19] Ki-Min Roh and Shin-Jae You,“The effect of the magnetron sputtering gun size on the characteristics of the plasma and CNx film deposition” Thin Solid Films290-291 (2011)112-119.
[20] Tomas Tamulevicius and Rimas Seperys,“Refractive index sensor based on the diamond like carbon diffraction grating” Thin Solid Films 519 (2011)4082-4086.
[21] Steven M. Smith and Steven A. Voight,“Nitrogen-doped plasma enhanced chemical vapor deposited (PECVD) amorphous carbon: processes and properties” Thin Solid Films 398 –399 (2001) 163–169.
[22] E. F. Motta, I. Pereyra,“Amorphous hydrogenated carbon-nitride films prepared by RF-PECVD in methane–nitrogen atmospheres” J. Non-Cryst. Solids. 338-340 (2004) 525-529.
[23] Steven M.Smith, Steven A. Voight, Harland Tompkins, Andy Hooper, A. Alec Talin,Joseph Vella,“Nitrogen-doped plasma enhanced chemical vapor deposited (PECVD) ”amorphous carbon: processes and properties” Thin Solid Films 398-399 (2001) 163-169.
[24] K. Babau, R. Hatada, Surf, “Preparation and properties of nitrogen and titanium oxide incorporated diamond-like carbon films by plasma source ion implantation” Surf and Coat. Tech. 136 (2001) 192-196.
[25] S. Bhattacharyya, C. Vallee, C. Cardinaud, O. Chauvet, and G. Turban, “Studies on structural properties of amorphous nitrogenated carbon films from electron energy loss, ellipsometry, Auger electron spectroscopy, and electron-spin resonance” J. Appl phys (1998)2162-2169.
[26] A.R. Forouhi and I.Bloomer ,“Optical dispersion relations for amorphous semiconductors and amorphous dielectrics” Phys.Rev.B 34(1986)7018-7026.
[27] A.R. Forouhi and I.Bloomer, “ Accurate and rapid determination of thickness n and k spectra,and resistivity of indium-tin-oxide films”J.Vac.Sci.Tech .A17(1999)1843-1847.
[28] Eugene Hecht,“Optics”Addison Wesley 428-429.
[29] Yong Liu, Gang Xu, Chenlu Song, Wenjian Weng, Piyi Du, Gaorong Han,“Modification on Forouhi and Bloomer model for the optical properties of amorphous silicon thin films” Thin Solid Films 515 (2007) 3910-3913.
[30] Ning Yu, Andreas A. Polycarpou, Thomas F. Conry, “Tip-radius effect in finite element modeling of sub-50 nm shallow nanoindentation”, Thin Solid Films 450 (2004) 295-303.
[31] R.B. King, “Elastic analysis of some punch problems for a layered medium” J.Solids Struct. 23 (1987) 1657-1664.
[32] R. Crombez a, J.McMinis , V.S.Veerasamy , W.Shen,“Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon (DLC) coatings deposited on glass” Tribology International 44 (2011) 55–62.
[33] 陳宏睿,鑽石PN接面元件製作與分析,國立中山大學碩士論文 (2007)
[34] 郭福升,大面積常壓電漿技術之研究, 國立成功大學碩士論文(2003)
[35] K.J.Clay,“Material properties and tribological performance of rf-PECVD deposited DLC coatings. Diamond and Relat Mater 7 (1998) 1100–1107.
[36] P. Hammer, W. Gissler,“ Chemical sputtering of carbon films by low energy N2+ ion bombardment” Diamond and Relat Mater 5 (1996) 1152-1158.
[37] He-Xiang Han and Bernard J. Feldman,“Structural and optical properties of amorphous carbon nitride”Solid State Commun 9 (1988). 921-923.
[38] M.K. Fung and W.C. Chan, “Effect of nitrogen incorporation into diamond-like carbon films by ECR-CVD” Diamond Relat Mater 8 (1999) 472–476.
[39] R.Crombz and J. Mcminis,“Experimental study of mechanical properties and scratch resistance of ultra-thin diamond-like-carbon(DLC)coatings deposited on glass”Tribology International 44(2011)55-62.
[40] Li-ye Huang and Ke-wei Xu, “Nano-scratch and fretting wear study of DLC coatings for biomedical application”Diamond and Relat Mater 10(2001)1448-1456.
[41] W. Lu and K. Komvopoulosa, “Microstructure and nanomechanical properties of nitrogenated amorphous carbon thin films synthesized by reactive radio frequency sputtering” J. Appl. Phys. 85(1999)2642-2651.
[42] J.L. Endrino and J.F. Marco, “Functionalization of hydrogen-free diamond-like carbon films using open-air dielectric barrier discharge atmospheric plasma treatments” Appl .Surf. Sci 254 (2008) 5323–5328.
[43] J.L. Endrino and J.F. Marco, “Functionalization of hydrogen-free diamond-like carbon films using open-air dielectric barrier discharge atmospheric plasma treatments” Appl. Sur. Sci 254 (2008) 5323–5328.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.41.187
論文開放下載的時間是 校外不公開

Your IP address is 3.141.41.187
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code