Responsive image
博碩士論文 etd-0809112-163308 詳細資訊
Title page for etd-0809112-163308
論文名稱
Title
沉積氮化鋁薄膜於不鏽鋼基材以應用於雙面壓電換能器之研究
Piezoelectric transducers based on double-sided AlN thin filmson stainless steel substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-17
繳交日期
Date of Submission
2012-08-09
關鍵字
Keywords
氮化鋁、不鏽鋼基板、懸臂樑、雙面壓電換能器、c軸優選取向
c-axis preferred orientation, Cantilever, double-sided piezoelectric transducers, AlN, stainless steel substrate
統計
Statistics
本論文已被瀏覽 5714 次,被下載 592
The thesis/dissertation has been browsed 5714 times, has been downloaded 592 times.
中文摘要
本研究於可撓式不鏽鋼基板上製作雙面氮化鋁壓電換能元件,設計共振面積1 cm2之懸臂樑結構,將生活中低頻之振動能轉換為電能。本研究使用反應性射頻磁控濺鍍法於不鏽鋼基板上沉積氮化鋁薄膜,調變濺鍍壓力、基板溫度、氣體分率、射頻功率,以掃描式電子顯微鏡及X光繞射儀分析氮化鋁薄膜表面形貌、剖面結構及結晶性等物理性質,得到高c軸優選取向之氮化鋁薄膜及單位厚度下具有最佳發電量之成長條件。
本研究於SUS 304不鏽鋼基板的正反兩面沉積氮化鋁薄膜,製作雙面氮化鋁壓電換能器,先於基板雙面沉積Pt/Ti附著層,以濺鍍壓力5 mTorr、基板溫度300 ℃、氣體分率40 %、射頻功率250 W於基板雙面沉積氮化鋁薄膜,製作高轉換效率之雙面氮化鋁壓電換能元件。雙面氮化鋁換能元件於振動頻率80 Hz、元件擺幅4mm及質量負載0.5 g下,可得到最大開路電壓為20 V,單位厚度之開路電壓為5.3 V/μm,經由整流濾波電路匹配7 MΩ負載下,直流輸出電壓為3.2 V,單位面積之輸出功率可達1.462 μW/cm2。
Abstract
This investigation examines a novel means of integrating high-performance AlN piezoelectric thin films with a flexible stainless steel substrate (SUS 304) to fabricate a double-sided piezoelectric transducer. Various sputtering parameters, such as sputtering pressure, substrate temperature, nitrogen concentration, and RF power, were investigated to improve the piezoelectric characteristics of AlN thin films. Scanning electron microscopy and X-ray diffraction of AlN piezoelectric film reveal a rigid surface structure and highly c-axis-preferring orientation. The maximum output power per unit thickness was discussed, and the optimal sputtering parameters were determined.
The double-sided piezoelectric transducer is constructed by depositing AlN piezoelectric thin films on both the front and the back sides of SUS 304 substrate. The titanium (Ti) and platinum(Pt) layers were deposited using a dual-gun DC sputtering system between the AlN piezoelectric thin film and the SUS 304 substrate. The optimal deposition parameters for AlN thin films are sputtering pressure of 5 mTorr, substrate temperature of 300 ℃, nitrogen concentration of 40 %, and RF power of 250 W. The maximum open circuit voltage of the transducer under the vibrational frequency of 80 Hz, vibration amplitude of 4mm, and mass loading of 0.5g, is approximately 20 V, or 5.3 V/μm. After full-wave rectification and filtering through a 33 nF capacitor, a specific output power of 1.462 μW/cm2 is obtained from the transducer with a load resistance of 7 MΩ.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 研究背景與動機 1
1-2 壓電換能器簡介 4
1-2-1 換能器基板材料 5
1-2-2 壓電層材料 7
1-2-3 薄膜製備方法 8
1-3 研究目的 9
第二章 理論分析 11
2-1 壓電效應原理 11
2-2 氮化鋁結構與特性 13
2-3 壓電換能器結構與壓電模式 16
2-3-1 壓電換能器類型 16
2-3-2 懸臂樑結構之壓電模式 18
2-3-3 懸臂樑壓電換能器結構 19
2-3-4 雙面壓電換能器串接原理 20
2-4 懸臂樑壓電換能器原理 21
2-5 薄膜沉積原理 26
2-6 反應性磁控濺鍍法 28
2-6-1 輝光放電原理 28
2-6-2 射頻濺鍍原理 29
2-6-3 磁控濺鍍原理 30
2-6-4 反應性濺鍍原理 30
2-7 不鏽鋼於高溫氧化之特性 32
2-7-1 金屬氧化理論 32
2-7-2 高溫氧化的形成原理 33
2-7-3 不鏽鋼高溫氧化之影響 34
2-8 全波整流濾波電路 35
2-8-1 橋式整流電路工作原理 35
2-8-2 電容濾波工作原理 37
第三章 研究方法 38
3-1 氮化鋁壓電換能器之設計與製作 38
3-1-1 元件設計 39
3-1-2 氮化鋁壓電換能器之設計與製作 40
3-2 薄膜沉積 42
3-2-1 基板的製備與清洗 42
3-2-2 Pt/Ti附著層沉積 42
3-2-3 氮化鋁壓電層沉積 43
3-3 物性分析 46
3-3-1 X-ray繞射分析 46
3-3-2 掃描式電子顯微鏡分析 47
3-4 電性量測 49
3-4-1 共振頻率量測 50
3-4-2 元件擺幅量測 51
3-4-3 整流濾波量測 52
第四章 結果與討論 54
4-1 沉積單面氮化鋁薄膜於不鏽鋼上之物性分析 54
4-1-1 濺鍍壓力對氮化鋁薄膜之影響 55
4-1-2 基板溫度對氮化鋁薄膜之影響 59
4-1-3 氣體分率對氮化鋁薄膜之影響 62
4-1-4 射頻功率對氮化鋁薄膜之影響 66
4-1-5 沉積氮化鋁薄膜於不鏽鋼上之最佳參數 70
4-2 加溫製程對雙面氮化鋁換能元件之影響 71
4-2-1 不鏽鋼基板背面氧化現象 71
4-2-2 正面氮化鋁薄膜回火效應 74
4-2-3 加溫製程之影響 76
4-3 雙面氮化鋁換能元件之最佳化 77
4-3-1 Sample 1之物性和電性分析 77
4-3-2 Sample 2之物性和電性分析 80
4-3-3 Sample 3之物性和電性分析 82
4-3-4 Sample 4 之物性和電性分析 85
4-3-5 Sample 5 之物性和電性分析 87
4-3-6 雙面元件之最佳製程參數 90
4-4 氮化鋁換能元件之電性量測 91
4-4-1 元件之共振頻率及擺幅量測 91
4-4-2 元件之整流濾波及輸出功率量測 94
第五章 結論與未來展望 96
5-1 研究結論 96
5-2 未來展望 98
參考文獻 99
參考文獻 References
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.
[2] N. Hatziargyriou, and A. Zervos, "Wind power development in Europe", Proceedings of the IEEE, vol. 89, pp. 1765-1782, 2001.
[3] C. Penche, "Guide on how to develop a small hydropower plant," ESHA, Brussels, 2004.
[4] J. Behrens, N. Rakowsky, W. Hiller, D. Handorf, M. Läuter, J. Päpke, and K. Dethloff, "amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation," Ocean Modelling, vol. 10, pp. 171-183, 2005.
[5] M. Tolga Balta, I. Dincer, and A. Hepbasli, "Thermodynamic assessment of geothermal energy use in hydrogen production," International Journal of Hydrogen Energy, vol. 34, pp. 2925-2939, 2009.
[6] K. Openshaw, "Biomass energy: employment generation and its contribution to poverty alleviation," Biomass and Bioenergy, vol. 34, pp. 365-378, 2010.
[7] E.J. Carlson, K. Strunz, and B.P. Otis, "A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting," IEEE Journal of Solid-State Circuits, vol. 45, pp. 741-750, 2010.
[8] E. Bouendeu, A. Greiner, P.J. Smith, and J.G. Korvink, "A low-cost electromagnetic generator for vibration energy harvesting," IEEE Sensors Journal, vol. 11, pp. 107-113 ,2011.
[9] N.G. Stephen, "On energy harvesting from ambient vibration," Journal of Sound and Vibration, vol. 293, pp. 409-425, 2006.
[10] C.B. Williams, and R.B. Yates, "Analysis of a micro-electric generator for microsystems," Sensors and Actuators A: Physical, vol. 52, pp. 8-11, 1996.
[11] C.B. Williams, R.C. Woods, and R.B. Yates, "Feasibility study of a vibration powered micro-electric generator," Proceedings of IEE Colloquim on Compact Power Sources, London, UK, pp. 7/1-7/3, 1996.
[12] C. Shearwood, and R.B. Yates, "Development of an electromagnetic microgenerator," Electronics Letters, vol. 33, pp. 1883-1884, 1997.
[13] R. Amirtharajah, and A.P. Chandrakasan, "Self-powered signal processing using vibration-based power generation," IEEE Journal of Solid-State Circuits, vol. 33, pp. 687-695, 1998.
[14] W.J. Li, T.C.H. Ho, G.M.H. Chan, P.H.W. Leong, and H.Y. Wong, "Infrared signal transmission by a laser-micromachined, vibration-induced power generator," Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Lansing MI, Michigan, USA, Aug. 8-11, 2000.
[15] P. Glynne-Jones, M.J. Tudor, S.P. Beeby, and N.M. White, "An electromagnetic, vibration-powered generator for intelligent sensor systems," Sensors and Actuators A: Physical, vol. 110, pp. 344-349, 2004.
[16] B.H. Stark, and T.C. Green, "Comparison of SOI power device structures in power converters for high-voltage, low-charge electrostatic microgenerators," IEEE Transactions on Electron Devices, vol. 52, pp. 1640-1648, 2005.
[17] E.O. Torres, and G.A. Rincón-Mora, "Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution," International Conference on Energy, Environment and Disasters, Charlotte, NC, USA, Jul. 24-30, 2005.
[18] N.M. White, P. Glynne-Jones, and S.P. Beeby, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, pp. 850-852, 2001.
[19] P. Glynne-Jones, S.P. Beeby, and N.W. White, "Towards a piezoelectric vibration-powered microgenerator," IEE Proceedings: Science, Measurement and Technology, pp. 68-72, 2001.
[20] Kim S., "Low power energy harvesting with piezoelectric generators," PhD Dissertation, University of Pittsburgh, 2002.
[21] J.Y. Kang, H.J. Kim, J.S. Kim, and T.S. Kim, "Optimal design of piezoelectric cantilever for a micro power generator with microbubble," The 2nd annual international IEEE-EMBS special topic conference on micro-technologies in medicine and biology, Madison, Wisconsin, USA, May 2-4, 2002.
[22] R.K. Sood, "Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger," Master Thesis, Massachusetts Institute of Technology, 2003.
[23] Y.B. Jeon, R. Sood, J.-h. Jeong, and S.-G. Kim, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22, 2005.
[24] J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, and B.C. Cai, "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, pp. 802-806, 2008.
[25] H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong, L. Wang, D. Chen, B.C. Cai, and Y. Liu, "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, pp. 1280-1284, 2006.
[26] S.J. Jeong, M.S. Kim, J.S. Song, and H. Lee, "Two-layered piezoelectric bender device for micro-power generator," Sensors and Actuators A: Physical, vol. 148, pp. 158-167, 2008.
[27] R. Elfrink, T.M. Kamel, M. Goedbloed, S. Matova, D. Hohlfeld, Y. Van Andel, and R. Van Schaijk, "Vibration energy harvesting with aluminum nitride-based piezoelectric devices," Journal of Micromechanics and Microengineering, pp. 049005(1-8), 2009.
[28] 吳秉融,氧化鋅薄膜成長於 PET 基板上並應用於壓電換能器之研究,國立中山大學電機工程學系碩士論文,2009。
[29] 朱育賢,雙面式氧化鋅壓電換能器之研究,國立中山大學電機工程學系碩士論文,2011。
[30] S. Priya, "Advances in energy harvesting using low profile piezoelectric transducers," Journal of Electroceramics, vol. 19, pp. 167-184, 2007.
[31] M. Marzencki, Y. Ammar, and S. Basrour, "Integrated power harvesting system including a MEMS generator and a power management circuit," Sensors and Actuators A: Physical, vol. 145, pp. 363-370, 2008.
[32] 陳麒麟,張榮芳 & 張加強,軟性顯示器發展及關鍵技術現況,機械工業雜誌,258期,頁110-121,2004。
[33] WEEE EU-Directive 2002/96/EC, "Waste electricaland electronic equipment," Official Journal of the European Union, L 37, pp.24-39, 2003.
[34] RoHs EU-Directive 2002/95/EC, "Restriction of the useof certain hazardous substances in electrical andelectronic equipment," Official Journal of the EuropeanUnion, L 37, pp.19-23, 2003.
[35] Ü. Sökmen, A. Stranz, A. Waag, A. Ababneh, H. Seidel, U. Schmid, and E. Peiner, "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications," Journal of Micromechanics and Microengineering, vol. 20, pp. 064007(1-7), 2010.
[36] J. Hernando, J.L. Sánchez-Rojas, U. Schmid, A. Ababneh, G. Marchand, and H. Seidel, "Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators," Microsystem Technologies, vol. 16, pp. 855-861, 2010.
[37] J.C. Doll, B.C. Petzold, B. Ninan, R. Mullapudi, and B.L. Pruitt, "Aluminum nitride on titanium for CMOS compatible piezoelectric transducers," Journal of Micromechanics and Microengineering, vol. 20, pp. 025008(1-8), 2010.
[38] G. Zhu, R. Yang, S. Wang, and Z.L. Wang,, "Flexible high-output nanogenerator based on lateral ZnO nanowire array," Nano letters, vol. 10, pp. 3151-3155, 2010.
[39] S.N. Cha, J.S. Seo, S.M. Kim, H.J. Kim, Y.J. Park, S.W. Kim, and J.M. Kim, "Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators," Advanced Materials, vol. 22, pp. 4726-4730, 2010.
[40] I.K. Bdikin, J. Gracio, R. Ayouchi, R. Schwarz, and A.L. Kholkin, "Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method," Nanotechnology, vol. 21, pp. 235703(1-6), 2010.
[41] G. Piazza, P.J. Stephanou, and A.P. Pisano, "Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators," Journal of Microelectromechanical Systems, vol. 15, pp. 1406-1418, 2006.
[42] C.D. Richards, M.J. Anderson, D.F., Bahr and R.F. Richards, "Efficiency of energy conversion for devices containing a piezoelectric component," Journal of Micromechanics and Microengineering, vol. 14, pp. 717-721, 2004.
[43] S.L. Kok, N.M. White, and N.R. Harris, "Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting," Measurement Science and Technology, vol. 20, pp. 124010(1-13), 2009.
[44] R. Sandberg, K. Mølhave, A. Boisen, and W. Svendsen, "Effect of gold coating on the Q-factor of a resonant cantilever," Journal of Micromechanics and Microengineering, vol. 15, pp. 2249-2253, 2005.
[45] J. Zhang, Z. Cao, and H. Kuwano, "Fabrication of Low-Residual-Stress AlN Thin Films and Their Application to Microgenerators for Vibration Energy Harvesting," Japanese Journal of Applied Physics, vol. 50, pp. 09ND18(1-4), 2011.
[46] M. Nakakuki, A. Shiono, I. Kobayashi, N. Tajima, T. Yamakami, R. Hayashibe, K. Abe, K. Kamimura, M. Obata, and M. Miyamoto, "Characterization of Al-based insulating films fabricated by physical vapor deposition," Japanese Journal of Applied Physics, vol. 47, pp. 609-611, 2008.
[47] K. Umeda, H. Kawamura, M. Takeuchi, and Y. Yoshino, "Characteristics of an AlN-based bulk acoustic wave resonator in the super high frequency range," Vacuum, vol. 83, pp. 672-674, 2008.
[48] K.S.A. Butcher, and T.L. Tansley, "Ultrahigh resistivity aluminum nitride grown on mercury cadmium telluride," Journal of Applied Physics, vol. 90, pp. 6217-6221, 2001.
[49] Y. Satoh, T. Nishihara, T. Yokoyama, M. Ueda, and T. Miyashita, "Development of piezoelectric thin film resonator and its impact on future wireless communication systems," Japanese journal of applied physics, vol. 44, pp. 2883-2894, 2005.
[50] Y. Yoshino, "Piezoelectric thin films and their applications for electronics," Journal of Applied Physics, vol. 105, pp. 061623(1-7), 2009.
[51] V.G. Mansurov, A.Yu. Nikitin, Yu.G. Galitsyn, S.N. Svitasheva, K.S. Zhuravlev, Z. Osvath, L. Dobos, Z.E. Horvath, and B. Pecz, "AlN growth on sapphire substrate by ammonia MBE," Journal of Crystal Growth, vol. 300, pp. 145-150, 2007.
[52] H.P.D. Schenk, U. Kaiser, G.D. Kipshidze, A. Fissel, J. Kräußlich, H. Hobert, J. Schulze, and Wo. Richter, "Growth of atomically smooth AlN films with a 5: 4 coincidence interface on Si (111) by MBE," Materials Science and Engineering B, vol. 59, pp. 84-87, 1999.
[53] J.W. Soh, W.J. Lee, J.H. Park, and S.W. Lee, "SAW characteristics of AlN films deposited on various substrates using ECR plasma enhanced CVD and reactive RF sputtering," IEEE Ultrasonic Symposium, pp. 299-302, 1996.
[54] C.-M. Yang, K. Uehara, S.-K. Kim, S. Kameda, H. Nakase, and K. Tsubouchi, "Highly c-axis-oriented AlN film using MOCVD for 5GHz-band FBAR filter," IEEE Ultrasonic Symposium, pp. 170-173, 2003.
[55] M.A. Mastro, C.R. Eddy, D.K. Gaskill, N.D. Bassim, J. Casey, A. Rosenberg, R.T. Holm, R.L. Henry, and M.E. Twigg, "MOCVD growth of thick AlN and AlGaN superlattice structures on Si substrates," Journal of Crystal Growth, vol. 287, pp. 610-614, 2006.
[56] M.B. Assouar, O. Elmazria, L.Le Brizoual, and P. Alnot, "Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices," Diamond and Related Materials, vol. 11, pp. 413-417, 2002.
[57] K.S. Kao, C.C. Cheng, and Y.C. Chen, "Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave," Japanese Journal of Applied Physics, vol. 40, pp. 4969-4973, 2001.
[58] W.J. Liu, S.J. Wu, C.M. Chen, Y.C. Lai, and C.H. Chuang, " Microstructural evolution and formation of highly c-axis-oriented aluminum nitride films by reactively magnetron sputtering deposition," Journal of Crystal Growth, vol. 276, pp. 525-533, 2005.
[59] 吳朗,電子陶瓷-壓電陶瓷,全欣資訊圖書公司,台北市,1994。
[60] G.J. Wang, W.C. Yu, Y.H. Lin, H. Yang, "Modeling and fabrication of a piezoelectric vibration-induced micro power generator," Journal of Chinese Institute of Engineers, vol. 29, pp. 697–706, 2006.
[61] E. Ruiz, S. Alvarez, P. Alemany, "Electronic structure and properties of AlN," Physical Review B: Condensed Matter and Materials Physics., vol. 49, pp. 7115-7123, 1994.
[62] 顏豐明,高熱傳導率氮化鋁基板材料之簡介,材料與社會, 73期,頁45-46,1993。
[63] B. Subramanian, K. Ashok, and M. Jayachandran, "Structure, mechanical and corrosion properties of DC reactive magnetron sputtered aluminum nitride (AlN) hard coatings on mild steel substrates," Journal of Applied Electrochemistry, vol. 38, pp. 619-625,2008.
[64] H.P. Löbl, M. Klee, R. Milsom, R. Dekker, C. Metzmacher, W. Brand, and P. Lok, "Materials for bulk acoustic wave (BAW) resonators and filters," Journal of the European Ceramic Society, vol. 21, pp. 2633-2640, 2001.
[65] T. Kamohara, M. Akiyama, and N. Kuwano, "Influence of polar distribution on piezoelectric response of aluminum nitride thin films," Applied Physics Letters, vol. 92, pp. 093506(1-3), 2008.
[66] H.P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, and P. Lok, "Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators," Materials Chemistry and Physics, vol. 79, pp. 143-146, 2003.
[67] F. Lu, H.P. Lee, and S.P. Lim, "Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications," Smart Materials and Structures, vol. 13, pp. 57-63, 2004.
[68] A. Lawver, "Thunder®: A new frontier in research for smart materials," Smart Materials Bulletin, vol. 2001, pp. 5-9, 2001.
[69] H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markle, R.E. Newnham, and H.F. Hofmann, "Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment", Japanese journal of applied physics, vol. 43, pp. 6178-6183, 2004.
[70] S.R. Anton, and H.A. Sodano, "A review of power harvesting using piezoelectric materials (2003–2006)", Smart Materials and Structures, vol. 16, pp. R1-R21, 2007.
[71] D. Charnegie, "Frequency tuning concepts for piezoelectric cantilever beams and plates for energy harvesting," Master Thesis, University of Pittsburgh, 2007.
[72] 黃煜昌,沉積氧化鋅薄膜於不鏽鋼基材及其作為壓電換能器之應用,國立中山大學電機工程學系碩士論文,2011。
[73] N.E. Du Toit, "Modeling and design of a mems piezoelectric vibration energy harvester," Master Thesis, Massachusetts Institute of Technology, 2005.
[74] 莊達人,VLSI製造技術,高立圖書股份有限公司,台北市,2003。
[75] R.W. Berry, P.M. Hall, and M.T. Harris, Thin Film Technology, Van Nostrand Princeton, New Jersey, 1968.
[76] J.L. Vossen, and W. Kern, Thin Film Processes II, Academic Press, New York, 1991.
[77] E. Janczak-Bienk, H. Jensen, and G. Sørensen "The influence of the reactive gas flow on the properties of AIN sputter-deposited films," Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[78] Davis J.R., Stainless Steels, ASM International, Metals Park, Ohio, USA, 1994.
[79] D.A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, New Jersey, 1992.
[80] C. Wagner, "Beitrag zur theorie des anlaufvorgangs," Zeitschrift für Physikalische Chemie, Vol. B41, p.42, 1933.
[81] 黃維彬,309系列不銹鋼高溫氧化行為及除銹條件之研究,義守大學材料科學與工程學系碩士論文, 2002。
[82] 柯賢文,腐蝕及其防制,全華科技圖書公司,台北市,1995。
[83] A.S. Sedra, and K.C. Smith, Microelectronic Circuits, Oxford University Press, USA, 1998.
[84] 陳智昇,懸臂樑式壓電發電機之結構阻尼探討,國立中興大學機械工程學系碩士論文,2004。
[85] R.C. Lin, K.S. Kao, C.C. Cheng, and Y.C. Chen, "Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device," Thin Solid Films, vol. 516, pp. 5262-5265, 2008.
[86] J.B. Lee, J.P. Jung, M.H. Lee, and J.S. Park, "Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs," Thin Solid Films, vol. 447, pp. 610-614, 2004.
[87] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama, and T. Yamada "Influence of metal electrodes on crystal orientation of aluminum nitride thin films," Vacuum, vol. 74, pp. 699-703, 2004.
[88] J. Paradiso, C. Abler, K. Hsiao, and M. Reynolds, "The magic carpet: physical sensing for immersive environments," In: Proc. of the CHI 1997 Conference on Human Factors in Computing Systems, Atlanta, Georgia, ,Mar. 22-27, 1997.
[89] F. Moll, and A. Rubio, "An approach to the analysis of wearable body-powered systems," in Proceedings of the Mixed Design of Integrated Circuits and Systems Conference, Gdynia, Poland, Jun. 15-17 ,2001.
[90] N.S. Shenck, and J.A. Paradiso, "Energy scavenging with shoe-mounted piezoelectrics," Micro, IEEE, vol. 21, pp. 30-42, 2001.
[91] J. Feenstra, J. Granstrom, and H. Sodano, "Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack," Mechanical Systems and Signal Processing, vol. 22, pp. 721-734, 2008.
[92] S. Roundy, P.K. Wright, J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Computer Communications, vol. 26, pp. 1131-1144, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code