Responsive image
博碩士論文 etd-0809112-164859 詳細資訊
Title page for etd-0809112-164859
論文名稱
Title
雙模態氧化鋅薄膜應用於壓電換能器之研究
Dual-mode ZnO thin films for piezoelectric transducers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-17
繳交日期
Date of Submission
2012-08-09
關鍵字
Keywords
壓電換能器、剪模態、縱模態、c軸傾斜、氧化鋅薄膜
piezoelectric transducer, shear mode, longitudinal mode, zinc oxide films, c-axis tilt
統計
Statistics
本論文已被瀏覽 5659 次,被下載 308
The thesis/dissertation has been browsed 5659 times, has been downloaded 308 times.
中文摘要
本論文之研究目的為以c軸傾斜之氧化鋅薄膜製作出雙模態薄膜壓電換能器,並利用懸臂樑振動理論作為發電模式以驗證出適用於低頻振動環境之壓電換能器。
為了研製雙模態薄膜壓電換能器,本研究運用射頻磁控濺鍍法結合離軸成長方式沉積氧化鋅薄膜於Pt/Ti/不鏽鋼基板(SUS304)上,並針對沉積參數之影響進行一系列的探討。由於氧化鋅薄膜是以c軸傾斜的方式做成長,故壓電換能器能同時具有縱模態及剪模態之特性。藉由X光繞射儀以及掃瞄式電子顯微鏡分析結晶特性、表面形貌及剖面結構等物理性質,並利用振動測試儀器進行電性之量測。經物性及電性分析結果得知,在工作壓力5 mTorr、濺鍍功率150 W、基板溫度R.T、氧氣濃度50 %時,可成長出傾斜角35°並具最大剪向模態之氧化鋅薄膜。此外,因銅金屬具有低電阻及低成本之優點,故本研究選用銅金屬做為雙模態壓電換能器之頂電極材料。本研究於元件上附加0.5 g之金屬塊以作為質量負載,用以加強懸臂樑擺動振幅。本研究研製之雙模態薄膜壓電換能器經振動源輸入65 Hz的振動能後,由示波器量測其輸出電量;結果顯示,當振動幅度為1 mm時,可得最大開路電壓19.4 V。當元件經1NN5711蕭特基二極體製成的橋式整流電路及33 nF的電容濾波後,再匹配5 MΩ之負載電阻,可得最大輸出功率為2.05 µW/cm2。
Abstract
The purpose of this thesis is to study the c-axis inclined ZnO films to produce dual-mode thin-film piezoelectric transducer. The cantilever beam vibration theory as a power generation mode in adopted to verify that the transducer is in suitable for the application in the environment for low-frequency vibration.
In order to develop dual-mode thin-film piezoelectric transducer, this study uses radio-frequency magnetron sputtering method with off-axis growth to deposit ZnO films on Pt/Ti/stainless steel substrate(SUS304), the effects of deposition parameters on the characteristict of ZnO films are studied. Because zinc oxide thin-film is grown with c-axis tilt, so the piezoelectric transducer exhibits longitudinal-mode and shear-mode characteristics. The physical characteristics of ZnO thin films were obtained by the analyses of the scanning electron microscopy (SEM) and X-ray diffraction (XRD) to discuss the surfaces, cross section and crystallization of ZnO thin films. Finally, the vibration test equipment in used for the measurement of electrical properties. The open and loaded voltages of the transducers were obtained by the measurement system. The optimal deposition parameters for ZnO thin films are sputtering pressure of 5 mTorr, RF power of 150W, substrate temperature of room temperature and oxygen concentration of 50%, which were determined by physical characteristics and voltage analysis. Under the optimal parameters, the ZnO thin-films are deposited with maximum shear-mode and tilting angles of 35°.The transducer was one-sid loaded with a piece of metal of 0.5 g load to enhance the cantilever vibration amplitude. As the input vibration of 65 Hz and vibration amplitude of 1mm were set, the maximum output power was obtained. The maximum open circuit voltage of 19.4 V was obtained. When the output of the transducers was recetified and filtered through a 1NN5711 Schottky diode bridge rectifier and a 33nF capacitor, the maximum power of 2.05μW/cm2 was achieved with the load resistance of 5MΩ.
目次 Table of Contents
目錄
誌謝 III
摘要 i
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1. 研究背景與動機 1
1.2. 壓電換能器簡介 4
1.2.1. 壓電換能器製備材料 5
1.3. 本文架構 8
1.3.1. 研究內容 9
1.3.2. 文獻回顧 9
第二章 理論分析 11
2.1. 壓電理論 11
2.1.1. 壓電原理 11
2.1.2. 壓電薄膜-氧化鋅的結構與特性 13
2.2. 壓電換能器應用之模式與結構 14
2.2.1. 壓電操作模式 14
2.2.2. 壓電換能器類型介紹 15
2.2.3. 懸臂樑發電模式介紹 17
2.2.4. 懸臂樑壓電換能器原理 18
2.3. 薄膜沉積機制 21
2.3.1. 薄膜表面及截面結構 23
2.4. 反應性射頻磁控濺鍍法 25
2.4.1. 輝光放電原理 26
2.4.2. 磁控濺鍍 27
2.4.3. 射頻濺鍍 28
2.4.4. 反應式濺鍍 29
2.5. 織構係數 30
2.6. 全波整流濾波電路 30
第三章 實驗方法 34
3.1. 雙模態壓電換能器之設計與製作 34
3.1.1. 元件尺寸 35
3.1.2. 雙模態壓電換能器製作 35
3.2. 薄膜沉積 37
3.2.1. 基板清洗與製備 37
3.2.2. Pt/Ti附著層沉積 37
3.2.3. 射頻濺鍍-壓電層沉積 38
3.3. 物理性質分析 41
3.3.1. X光繞射(X-Ray Diffraction, XRD)分析 41
3.3.2. 掃描式電子顯微鏡(SEM)分析 42
3.4. 電性量測 43
3.4.1. 換能器共振頻率量測 44
3.4.2. 元件振動擺幅量測 44
3.4.3. 換能器開路電壓量測 45
3.4.4. 換能器不同負載電壓量測 45
3.4.5. 換能器整流濾波輸出負載電壓量測 46

第四章 結果與討論 47
4.1. 氧化鋅壓電層之探討 47
4.1.1. 濺鍍壓力之影響 48
4.1.2. 濺鍍功率之影響 52
4.1.3. 基板溫度之影響 57
4.1.4. 氧分率之影響 61
4.2. 薄膜結晶探討 64
4.2.1. (103)晶向對(002)晶向之相互關係 65
4.2.2. (103)晶向對發電量之影響 67
4.3. 雙模態壓電換能器輸出電量之探討 69
4.3.1. 不同振動頻率對輸出電壓的影響 69
4.3.2. 具整流濾波系統之雙模態壓電換能器 70
第五章 結論與未來展望 74
5.1. 研究結論 74
5.2. 邁向未來 75
參考文獻 76
參考文獻 References
[1] Lund J.W., Freeston D.H. and Boyd T.L., 2011, "Direct utilization of geothermal energy 2010 worldwide review," Geothermics, vol. 40, pp. 159-180 .
[2] Ostergaard P.A. and Lund H., 2011, "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, vol. 88, pp. 479-487.
[3] Tolga Balta M., Dincer I. and Hepbasli A., 2009, "Thermodynamic assessment of geothermal energy use in hydrogen production," International Journal of Hydrogen Energy, vol. 34, pp. 2925-2939.
[4] Venkatasubramanian R., Siivola E., Colpitts T. and O'quinn B., 2010, "Thin-film thermoelectric devices with high room-temperature figures of merit," Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, vol. 413, pp. 597-602.
[5] Carlson E.J., Strunz K. and Otis B.P., 2010, "A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 741-750.
[6] O'regan B. and Gratzel M., 1991, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740.
[7] Green M.A., Emery K., Hishikawa Y. and Warta W., 2010, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352.
[8] Britt J. and Ferekides C., 1993, "Thin‐film CdS/CdTe solar cell with 15.8% efficiency," Applied Physics Letters, vol. 62, pp. 2851-2852.
[9] Stephen N., 2006, "On energy harvesting from ambient vibration," Journal of Sound and Vibration, vol. 293, pp. 409-425.
[10] Bouendeu E., Greiner A., Smith P.J. and Korvink J.G., 2011, "A low-cost electromagnetic generator for vibration energy harvesting," IEEE Sensors Journal, vol. 11, pp. 107-113.
[11] Hatziargyriou N. and Zervos A., 2001, "Wind power development in Europe," Proceedings of the IEEE, vol. 89, pp. 1765-1782.
[12] European Small Hydropower Association 2004, "Guide on How to Develop a Small Hydropower Plant," Renewable Energy House, Brussels, Belgium .
[13] Blunden L. and Bahaj A., 2007, "Tidal energy resource assessment for tidal stream generators," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 221, pp. 137-146.
[14] Behrens J., Rakowsky N., Hiller W., Handorf D., Läuter M., Päpke J. and Dethloff K., 2005, "amatos: Parallel adaptive mesh generator for atmospheric and oceanic simulation," Ocean Modelling, vol. 10, pp. 171-183.
[15] Hoogwijk M., Faaij A., Van Den Broek R., Berndes G., Gielen D. and Turkenburg W., 2003, "Exploration of the ranges of the global potential of biomass for energy," Biomass and Bioenergy, vol. 25, pp. 119-133.
[16] Openshaw K., 2010, "Biomass energy: employment generation and its contribution to poverty alleviation," Biomass and Bioenergy, vol. 34, pp. 365-378.
[17] Williams C. and Yates R.B., 1996, "Analysis of a micro-electric generator for microsystems," Sensors and Actuators A: Physical, vol. 52, pp. 8-11.
[18] Williams C., Woods R. and Yates R., 1996, "Feasibility study of a vibration powered micro-electric generator," Compact Power Sources (Digest No. 96/107), IEE Colloquium on IET, pp. 7/1-7/3.
[19] Shearwood C. and Yates R.B., 1997, "Development of an electromagnetic microgenerator," Electronics Letters, vol. 33, no. 22, pp. 1883-1884.
[20] Amirtharajah R. and Chandrakasan A.P., 1998, "Self-powered signal processing using vibration-based power generation," IEEE Journal of Solid-State Circuits , vol. 33, pp. 687-695.
[21] Li W. J., Ho T. C. H., G. Chan M. H., Leong P. H. W., and Wong H. Y., 2000 "Infrared signal transmission by a laser-micromachined vibration-induced power generator", Proc. 43rd IEEE Midwest Symp. Circuits and Syst., vol. 1, pp.236 -239.
[22] Glynne-Jones P., Tudor M., Beeby S. and White N., 2004, "An electromagnetic, vibration-powered generator for intelligent sensor systems," Sensors and Actuators A: Physical, vol. 110, pp. 344-349.
[23] Smith T.L., Ferry J.D. and Schremp F.W., 1949, "Measurements of the mechanical properties of polymer solutions by electromagnetic transducers," Journal of Applied Physics, vol. 20, no. 2, pp. 144-153.
[24] Stark B.H. and Green T., 2005, "Comparison of SOI power device structures in power converters for high-voltage, low-charge electrostatic microgenerators," IEEE Transactions on Electron Devices, vol. 52, pp. 1640-1648.
[25] Torres E. O. and Rincn-Mora G. A., 2005 "Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution," Int. Conf. Energy, Environ., Disasters.
[26] White N., Glynne-Jones P. and Beeby S., 2001, "A novel thick-film piezoelectric micro-generator," Smart Materials and Structures, vol. 10, pp. 850-852.
[27] Glynne-Jones P., Beeby S. and White N., 2001, "Towards a piezoelectric vibration-powered microgenerator," Science, Measurement and Technology, IEE Proceedings-IET, vol. 148, pp. 68-72.
[28] Kim S., 2002, "Low power energy harvesting with piezoelectric generator" PhD Dissertation University of Pittsburgh, Pittsburgh, PA.
[29] Kang J.Y., Kim H.J., Kim J.S. and Kim T.S., 2002, "Optimal design of piezoelectric cantilever for a micro power generator with microbubble," Microtechnologies in Medicine & Biology 2nd Annual International IEEE-EMB Special Topic Conference on IEEE, pp. 424-427.
[30] Sood R.K. and Kim S., 2003, "Piezoelectric micro power generator (PMPG): A MEMS-based energy scavenger," Graduate Thesis, Massachusetts Institute of Technology .
[31] Fang H.B., Liu J.Q., Xu Z.Y., Dong L., Wang L., Chen D., Cai B.C. and Liu Y., 2006, "Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting," Microelectronics Journal, vol. 37, no. 11, pp. 1280-1284.
[32] Liu J.Q., Fang H.B., Xu Z.Y., Mao X.H., Shen X.C., Chen D., Liao H. and Cai B.C., 2008, "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, pp. 802-806.
[33] Jeong S.J., Kim M.S., Song J.S. and Lee H., 2008, "Two-layered piezoelectric bender device for micro-power generator," Sensors and Actuators A: Physical, vol. 148, pp. 158-167.
[34] Rocha J.G., Goncalves L.M., Rocha P., Silva M. and Lanceros-Mendez S., 2010, "Energy harvesting from piezoelectric materials fully integrated in footwear," Industrial Electronics, IEEE Transactions on, vol. 57, pp. 813-819.
[35] 吳秉融,2009,"氧化鋅薄膜成長於PET基板上並應用於壓電換能器之研究",國立中山大學電機工程學系碩士論文。
[36] 黃煜昌,2010,"沉積氧化鋅薄膜於不鏽鋼基材及其作為壓電換能器之應用",國立中山大學電機工程學系碩士論文。
[37] 朱育賢,2011,"雙面式氧化鋅壓電換能器之研究",國立中山大學電機工程學系碩士論文。
[38] 林盈旭,2002,"壓電式振動微發電機之設計與製作",國立中興大學機械工程學系碩士論文。
[39] 廖偉翔,2006,"壓電換能器於低頻發電應用之設計與分析",國立成功大學機械工程學系碩士論文。
[40] Priya, S. & Inman, D. J. in Energy harvesting technologies (Springer Verlag, 2008).
[41] Jeon Y., Sood R., Jeong J. and Kim S.G., 2005, "MEMS power generator with transverse mode thin film PZT," Sensors and Actuators A: Physical, vol. 122, pp. 16-22.
[42] Roundy S., Leland E.S., Baker J., Carleton E., Reilly E., Lai E., Otis B., Rabaey J.M., Wright P.K. and Sundararajan V., 2005, "Improving power output for vibration-based energy scavengers," IEEE Pervasive Computing, vol. 4, pp. 28-36.
[43] Leland E.S., White R.M. and Wright P.K., 2006, "Energy scavenging power sources for household electrical monitoring," PowerMEMS.
[44] Khaligh A., Zeng P., Wu X. and Xu Y., 2008, "A hybrid energy scavenging topology for human-powered mobile electronics," Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE, pp. 448-453.
[45] Pan C.T., Liu Z., Chen Y. and Liu C., 2010, "Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates," Sensors and Actuators A: Physical, vol. 159, pp. 96-104.
[46] 陳麒麟,張榮芳 & 張加強,2004,"軟性顯示器發展及關鍵技術現況",機械工業雜誌,258期,pp. 110-121。
[47] Zhu G., Yang R., Wang S. and Wang Z.L., 2010, "Flexible high-output nanogenerator based on lateral ZnO nanowire array," Nano letters, pp. pp. 3151–3155.
[48] Cha S.N., Seo J.S., Kim S.M., Kim H.J., Park Y.J., Kim S.W. and Kim J.M., 2010, "Sound‐Driven Piezoelectric Nanowire‐Based Nanogenerators," Advanced Materials, vol. 22, pp. 4726-4730.
[49] Huang C.Y., Sun J.H. and Wu T.T., 2010, "A two-port ZnO/silicon Lamb wave resonator using phononic crystals," Applied Physics Letters, vol. 97, pp. 031913-1 - 031913-3.
[50] Bdikin I., Gracio J., Ayouchi R., Schwarz R. and Kholkin A., 2010, "Local piezoelectric properties of ZnO thin films prepared by RF-plasma-assisted pulsed-laser deposition method," Nanotechnology, vol. 21, pp. 235703-1 - 235703-6.
[51] Sökmen Ü., Stranz A., Waag A., Ababneh A., Seidel H., Schmid U. and Peiner E., 2010, "Evaluation of resonating Si cantilevers sputter-deposited with AlN piezoelectric thin films for mass sensing applications," Journal of Micromechanics and Microengineering, vol. 20, pp. 064007-1 - 064007-7.
[52] Hernando J., Sánchez-Rojas J.L., Schmid U., Ababneh A., Marchand G. and Seidel H., 2010, "Characterization and displacement control of low surface-stress AlN-based piezoelectric micro-resonators," Microsystem Technologies, vol. 16, pp. 855-861.
[53] Doll J.C., Petzold B.C., Ninan B., Mullapudi R. and Pruitt B.L., 2010, "Aluminum nitride on titanium for CMOS compatible piezoelectric transducers," Journal of Micromechanics and Microengineering, vol. 20, pp. 025008-1 - 025008-8.
[54] Baxter J.B., Walker A., Van Ommering K. and Aydil E., 2006, "Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells," Nanotechnology, vol. 17, pp. S304-S312.
[55] Luther J.M., Gao J., Lloyd M.T., Semonin O.E., Beard M.C. and Nozik A.J., 2010, "Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell," Advanced Materials, vol. 22, pp. 3704-3707.
[56] Fernández M.J., Fontecha J.L., Sayago I., Aleixandre M., Lozano J., Gutiérrez J., Gràcia I., Cané C. and Horrillo M.C., 2007, "Discrimination of volatile compounds through an electronic nose based on ZnO SAW sensors," Sensors and Actuators B: Chemical, vol. 127, pp. 277-283.
[57] Wei C.L., Chen Y.C., Cheng C.C., Kao K.S., Cheng D.L. and Cheng P.S., 2010, "Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator," Thin Solid Films, vol. 518, pp. 3059-3062.
[58] Iwata K., Sakemi T., Yamada A., Fons P., Awai K., Yamamoto T., Shirakata S., Matsubara K., Tampo H. and Sakurai K., 2005, "Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD)," Thin Solid Films, vol. 480, pp. 199-203.
[59] Steinhauser J., Nicolay S. and Ballif C., 2010, "Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells," Thin Solid Films, vol. 518, pp. 2961-2966.
[60] Kim H.J., Lee C.H., Kim D.W. and Yi G.C., 2006, "Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors," Nanotechnology, vol. 17, pp. S327-S331.
[61] Fleischhaker F., Wloka V. and Hennig I., 2010, "ZnO based field-effect transistors (FETs): solution-processable at low temperatures on flexible substrates," J.Mater.Chem., vol. 20, pp. 6622-6625.
[62] Water W. and Chu S.Y., 2002, "Physical and structural properties of ZnO sputtered films," Materials Letters, vol. 55, pp. 67-72.
[63] Li X., Huang A., Zhu M., Chen J., Wang H., Wang B. and Yan H., 2003, "Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films," Materials Letters, vol. 57, pp. 4655-4659.
[64] Vayssieres L., Keis K., Lindquist S.E. and Hagfeldt A., 2001, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO," The Journal of Physical Chemistry B, vol. 105, pp. 3350-3352.
[65] Sakurai K., Kanehiro M., Nakahara K., Tanabe T., Fujita S. and Fujita S., 2000, "Effects of oxygen plasma condition on MBE growth of ZnO," Journal of Crystal Growth, vol. 209, pp. 522-525.
[66] Srinivasan G. and Kumar J., 2006, "Optical and structural characterisation of zinc oxide thin films prepared by sol‐gel process," Crystal Research and Technology, vol. 41, pp. 893-896.
[67] Zhang K., Zhao Y., He F. and Liu D., 2007, "Piezoelectricity of ZnO films prepared by sol-gel method," Chinese Journal of Chemical Physics, vol. 20, pp. 721-726.
[68] Yoon K.H. and Cho J.Y., 2000, "Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique," Materials Research Bulletin, vol. 35, pp. 39-46.
[69] Nakanishi Y., Miyake A., Kominami H., Aoki T., Hatanaka Y. and Shimaoka G., 1999, "Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation," Applied Surface Science, vol. 142, pp. 233-236.
[70] Wang L., Pu Y., Chen Y., Mo C., Fang W., Xiong C., Dai J. and Jiang F., 2005, "MOCVD growth of ZnO films on Si (111) substrate using a thin AlN buffer layer," Journal of Crystal Growth, vol. 284, pp. 459-463.
[71] Villanueva Y.Y., Liu D.R. and Cheng P.T., 2006, "Pulsed laser deposition of zinc oxide," Thin Solid Films, vol. 501, pp. 366-369.
[72] Qin L., Chen Q., Cheng H. and Wang Q.M., 2010, "Analytical Study of Dual- Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on ZnO and AlN Films With Tilted c-Axis Orientation", IEEE Trans. Ultrason. Ferr. Freq. Control., vol. 57, pp. 1840-1853.
[73] Wu S., Lin Z.X., Lee M.S. and Ro R., 2007, "Bulk acoustic wave analysis of crystalline plane oriented ZnO films," Journal of Applied Physics, vol. 102, pp. 084908-1 - 084908-7.
[74] 吳朗,1994,電子陶瓷—壓電陶瓷,全欣資訊圖書公司,台北市。
[75] Smith A. and Rodriguez-Clemente R., 1999, "Morphological differences in ZnO films deposited by the pyrosol technique: effect of HCl," Thin Solid Films, vol. 345, pp. 192-196.
[76] Ko H., Chen Y., Hong S., Wenisch H., Yao T. and Look D., 2000, "Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy," Applied Physics Letters, vol. 77, pp. 3761-3763.
[77] Lin S.S., Huang J.L. and Šajgalik P., 2005, "The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering," Surface and Coatings Technology, vol. 191, pp. 286-292.
[78] Major S. and Chopra K., 1988, "Indium-doped zinc oxide films as transparent electrodes for solar cells," Solar energy materials, vol. 17, pp. 319-327.
[79] El Hichou A., Addou M., Bougrine A., Dounia R., Ebothe J., Troyon M. and Amrani M., 2004, "Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis," Materials Chemistry and Physics, vol. 83, pp. 43-47.
[80] Lu F., Lee H. and Lim S., 2004, "Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications," Smart Materials and Structures, vol. 13, pp. 57-63.
[81] Lawver A., 2001, "Thunder: A new frontier in research for smart materials," Smart Materials Bulletin, vol. 2001, pp. 5-9.
[82] Kim H.W., Batra A., Priya S., Uchino K., Markley D., Newnham R.E. and Hofmann H.F., 2004, "Energy Harvesting Using a Piezoelectric Cymbal Transducer in Dynamic Environment," Japanese journal of applied physics, vol. 43, pp. 6178-6183.
[83] Anton S.R. and Sodano H.A., 2007, "A review of power harvesting using piezoelectric materials (2003–2006)," Smart Materials and Structures, vol. 16, pp. R1-R21.
[84] I. Petrov, P.B. Barna, L. Hultman and J.E. Greene, 2003, "Microstructural evolution during film growth, " J Vac Sci Technol A, vol. 21, pp. S117-S128.
[85] Thornton J.A., 1974, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, pp. 666-670.
[86] 施敏 and張俊彥,1990,半導體元件之物理與技術,儒林, pp. 425。
[87] Berry R.W., Hall P.M. and Harris M.T., 1968, Thin film technology, Van Nostrand Princeton, New Jersey.
[88] Vossen J.L. and Kern W., 1991, Thin film processes II.
[89] F. Shinoki and A. Itoh, 1975, “Mechanism of rf reactive sputtering,” J. Appl. Phys., vol. 46, pp. 3381-3384.
[90] Lee J.B., Lee M.H., Park C.K. and Park J.S., 2004, "Effects of lattice mismatches in ZnO/substrate structures on the orientations of ZnO films and characteristics of SAW devices," Thin Solid Films, vol. 447, pp. 296-301.
[91] Sedra A.S. and Smith K.C., 1998, Microelectronic circuits, Oxford University Press, USA.
[92] 陳智昇,2004,"懸臂樑式壓電發電機之結構阻尼探討",國立中興大學機械工程學系碩士論文。
[93] 郭益男,2004,"反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究",國立中山大學電機工程學系碩士論文。
[94] Lin R.C., Chen Y.C. and Kao K.S., 2007, "Two-step sputtered ZnO piezoelectric films for film bulk acoustic resonators," Applied Physics A: Materials Science & Processing, vol. 89, pp. 475-479.
[95] 劉吉卿,2006,"以兩階段濺鍍法沉積氧化鋅壓電薄膜於薄膜體聲波共振器之應用",國立中山大學電機工程學系碩士論文。
[96] Lee J.B., Jung J.P., Lee M.H. and Park J.S., 2004, "Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs," Thin Solid Films, vol. 447, pp. 610-614.
[97] Akiyama M., Nagao K., Ueno N., Tateyama H. and Yamada T., 2004, "Influence of metal electrodes on crystal orientation of aluminum nitride thin films," Vacuum, vol. 74, pp. 699-703.
[98] Barna P.B., Adamik M., 1998, Thin Solid Films, 317, p.27.
[99] Jin B.J., Bae S.H., Lee S.Y., Im S., 2002,"Materials Science and Engineering," pp.301-305.
[100] Jain L., 2006, "Chinese Journal Of Lumineswnce," vol. 27, pp.927-932.
[101] Krishnaswamy S., McAvoy B., Takei W. and Moore R., 1982, "Oriented ZnO films for microwave shear mode transducers," 1982 Ultrasonics Symposium IEEE, pp. 476-479.
[102] Minakata M., Chubachi N. and Kikuchi Y., 1973, "Variation of c-axis orientation of ZnO thin films deposited by DC diode sputtering," Japanese Journal of Applied Physics, vol. 12, pp. 474-475.
[103] Wang J., Lakin K. and Landin A., 1983, "Sputtered C-axis inclined piezoelectric films and shear-wave resonators," pp. 8306120-1 - 8306120-8 .
[104] J. Bjurstrom, G. Wingqvist, and I. Katardjiev, 2006 "Synthesis of Textured Thin Film Piezoelectric AlN Films with a Nonzero c-axis Mean Tilt for the Fabrication of Shear Mod Resonators, " IEEE Trans. UFFC, 11, 2095–100.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code