Responsive image
博碩士論文 etd-0809112-165228 詳細資訊
Title page for etd-0809112-165228
論文名稱
Title
Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究
Investigation of allergy biosensor for human IgE detection using Sezawa-mode surface acoustic wave devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-17
繳交日期
Date of Submission
2012-08-09
關鍵字
Keywords
Sezawa模態、表面聲波、免疫球蛋白E、生醫感測器、氧化鋅
IgE, allergy biosensor, SAW, Sezawa-mode, ZnO
統計
Statistics
本論文已被瀏覽 5706 次,被下載 674
The thesis/dissertation has been browsed 5706 times, has been downloaded 674 times.
中文摘要
本研究主要利用Sezawa模態表面聲波(SAW)元件製作出應用於人類免疫球蛋白E (IgE)檢測之過敏感測器;為了研製Sezawa模態表面聲波元件,本研究於Si3N4/Si基板上藉由射頻磁控濺鍍法沉積氧化鋅(ZnO)薄膜,並針對沉積參數之影響進行探討。藉由X光繞射儀與掃描式電子顯微鏡對ZnO薄膜進行物性分析,得到具有高c軸優選取向之ZnO薄膜。
於本研究中,採用背蝕型共振腔,利用濕式蝕刻製程蝕刻(100)晶向Si晶圓之背部空腔以作為感測區,並利用低壓化學氣相沉積(LPCVD)法沉積低應力之氮化矽薄膜作為蝕刻遮罩以完成表面聲波元件。為了探討表面聲波元件之感測特性,本研究藉由沉積金(Au)薄膜於表面聲波元件之感測區中以作為生醫感測器之附著層,並利用氧電漿系統處理金薄膜表面,以提高金薄膜之親水性。利用自我組裝單分子膜技術(SAMs)對金薄膜表面進行修飾,再利用三明治酵素連結免疫吸附法(Sandwich ELISA)檢測人類免疫球蛋白E之濃度變化,以網路分析儀E5071C量測元件之頻率響應。經由實驗結果得知,Sezawa模態表面聲波元件之共振頻率為1.49 GHz;且經由計算得知,Sezawa模態表面聲波元件於人類免疫球蛋白E之檢測,其元件之靈敏度為6.64 MHz cm2/ng。
Abstract
In this study, Sezawa-mode surface acoustic wave (SAW) devices were employed to construct the allergy biosensor. To fabricate Sezawa-mode SAW devices, the RF magnetron sputtering method for the growth of piezoelectric ZnO thin films onto Si3N4/Si is adopted and influences of the sputtering parameters are investigated. The properties of the ZnO thin films are investigated by X-ray diffraction and scanning electron microscopy which reveal a high c-axis-preferred orientation. A back-etched resonator is used in this study. The wet etching of (100)-oriented silicon wafers is used to form a back-side cavity which is used as the sensing area. Low-stress silicon nitride was deposited by low-pressure chemical vapor deposition (LPCVD) as the etching mask for the integrated SAW device. To investigate the sensing characteristics of SAW, gold (Au) layer was initially deposited onto the sensing area of SAW devices as the binding layer in biochemical sensor and the surface of the Au layer was treated with oxygen plasma to enhance the hydrophilic properties of the Au layer. The self assembly monolayers (SAMs) is used to decorate surface of Au layer and the sandwiched enzyme-linked immunosorbent assay is used for detecting the concentration variation of immunoglobulin E (IgE) in human serum. The frequency response is measured using an E5071C network analyzer. The resonance frequency of the Sezawa-mode SAW device is 1.49 GHz. The sensitivities of the Sezawa-mode biosensor is calculated to be 6.64 MHz cm2/ng for human IgE detection.
目次 Table of Contents
誌謝 i
摘要 ii
目錄 v
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究背景與動機 1
1.2 表面聲波共振器 3
1.3 研究內容 5
第二章 理論分析 9
2.1 壓電理論 9
2.1.1 壓電效應 10
2.1.2 壓電材料 11
2.2 氧化鋅結構與特性 12
2.3 反應性射頻磁控濺鍍原理 14
2.3.1 輝光放電 14
2.3.2 磁控濺射 16
2.3.3 射頻濺射 17
2.3.4 反應性濺射 17
2.4 薄膜沉積機制 18
2.4.1 薄膜沉積階段 18
2.4.2 薄膜表面與剖面結構 20
2.5 矽基板蝕刻製程 21
2.5.1 非等向性濕式蝕刻 21
2.5.2 乾式蝕刻 24
2.6 表面聲波元件理論與特性 25
2.6.1 表面聲波元件基本設計與特性 25
2.6.2 Rayleigh wave與Sezawa wave 27
2.7 表面聲波元件種類 29
2.7.1 共振型表面聲波元件 29
2.7.2 延遲型表面聲波元件 30
2.8 表面聲波元件參數性質 30
2.8.1 傳播波速 30
2.8.2 插入損失 31
2.8.3 機電耦合係數 32
2.9 質量負載效應 33
2.10 感測度計算 35
2.11 電漿修飾 35
2.11.1 電漿聚合 35
2.11.2 電漿活化 36
2.11.3 電漿誘導接枝共聚合 36
2.12 接觸角量測法 37
2.13 自我組裝單分子膜技術 38
2.13.1 SAMs成膜系統 39
2.13.2 SAMs基本結構 39
2.14 酵素連結免疫吸附法 40
2.14.1 直接型酵素連結免疫吸附法 41
2.14.2 間接型酵素連結免疫吸附法 41
2.14.3 三明治型酵素連結免疫吸附法 41
第三章 實驗 43
3.1 實驗流程 43
3.2 薄膜沉積 45
3.2.1 射頻磁控濺鍍系統 45
3.2.2 直流磁控濺鍍系統 47
3.3 薄膜特性分析 48
3.3.1 X光繞射分析 48
3.3.2 掃描式電子顯微鏡分析 49
3.4 蝕刻製程 49
3.5 表面聲波元件製作流程 49
3.5.1 基板清洗 51
3.5.2 支撐層與壓電層之製作 52
3.5.3 IDTs指叉電極製作 52
3.5.4 蝕刻背部空腔 54
3.6 表面聲波元件網路分析儀量測 54
3.7 生醫感測 55
3.7.1 生醫附著層 55
3.7.2 氧電漿清洗&接觸角量測 56
3.7.3 SAMs法 57
3.7.4 ELISA呈色分析 57
3.7.5 表面聲波元件生醫感測器 58
第四章 結果與討論 59
4.1 氧化鋅薄膜之特性分析 59
4.1.1 濺鍍壓力 59
4.1.2 基板溫度 62
4.2 背部空腔之影響 64
4.3 表面聲波元件之頻率響應 66
4.4 生醫感測 69
4.4.1 Au/Cr生醫附著層 69
4.4.2 接觸角量測 71
4.4.3 ELISA呈色分析 71
4.4.4 頻率響應 73
第五章 結論及未來展望 81
參考文獻 82
參考文獻 References
[1] 林貴滿 & 林靜琪, 內外科護理學(上)(一版), 華杏出版社, 頁110-111, 年2005.
[2] C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator,” Thin Solid Films, vol. 518, pp. 3059-3062, 2010.
[3] V. Hinrichsen, G. Scholl, M. Schubert and T. Ostertag, “Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors,” Eleventh International Symposium on (Conf. Publ. No. 467), vol. 2, pp. 238-241, 1999.
[4] L. Reindl, I. Shrena, S. Kenshil and R. Peter, “Wireless measurement of temperature using surface acoustic waves sensors,” IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum, pp. 935-941, 2003.
[5] A. Venema, E. Nieuwkoop, M. J. Vellekoop, M. S. Nieuwenhuizen and A. W. Barendsz, “Design aspects of SAW gas sensors,” Sensors and Actuators, vol. 10, pp. 47-64, 1986.
[6] A. Mauder, “SAW gas sensors: Comparison between delay line and two port resonator,” Sensors Actuators B: Chem., vol. 26, pp. 187-190, 1995.
[7] I. Y. Huang and M. C. Lee, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies,” Sensors Actuators B: Chem., vol. 132, pp. 340-348 (2008).

[8] 王宏文, “淺談表面聲波感測器,” 工業材料—精密陶瓷專輯(第89期), 頁 44-45, 年1994.
[9] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid.” Proceedings of the London Mathematical Society, vol. 17, pp. 4-11 (1885).
[10] A.E.H. Love, Some Problems of Geodynamics, Cambridge University Press, London, 1911
[11] K. Sezawa, "Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces," Bull. Earthquake Res. Inst., Univ. Tokyo 3, pp. 1–18, 1927.
[12] R. M. White and F. W. Voltmer, “Driect piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett, vol. 17, pp. 314-316, 1965.
[13] A. Talbi, F. Sarry, L. Le Brizoual, M. Elhakiki, O. Elmazria and P. Alnot, “Pressure sensitivity of Rayleigh and Sezawa wave in ZnO/Si [001] structures,” IEEE Ultrason. Symp., Vol. 2, pp. 1338-1341, 2003.
[14] T. Shiosaki, T. Yamamoto and A. Kawabata, “Higher order mode Rayleigh waves propagating on ZnO/Substrate structures,” IEEE Ultrason. Symp., vol. 1, pp. 814-818, 1977.
[15] 吳朗, 沈季燕 & 沈煜棠, “表面聲波 SAW 化學感測器,” Chemistry (The Chinese CHEM.SOC, Taipei), 卷59, 頁279-286, 年2001.
[16] 黃仕泓 & 柯正浩, “表面聲波感測器之前瞻研究,” 物理雙月刊 (二三卷六期), 年2004.
[17] M. Purica, E. Budianu, E. Rusu, M. Danila and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403, pp. 485-488, 2002.

[18] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
[19] Y. Zhang, G. Du, X. Wang, W. Li, X. Yang, Y. Ma, B. Zhao, H. Yang, D. Liu and S. Yang, “X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition,” J.Cryst.Growth, vol. 252, pp. 180-183, 2003.
[20] C. Wang, Z. Ji, K. Liu, Y. Xiang and Z. Ye, “ p-Type ZnO thin films prepared by oxidation of Zn3N2 thin films deposited by DC magnetron sputtering,” J.Cryst.Growth, vol. 259, pp. 279-281, 2003.
[21] K. Sundaram and A. Khan, “Characterization and optimization of zinc oxide films by rf magnetron sputtering,” Thin Solid Films, vol. 295, pp. 87-91, 1997.
[22] Y. Heo, D. Norton and S. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” J.Appl.Phys., vol. 98, pp. 073502-1 – 073052-6, 2005.
[23] 吳朗, 電子陶瓷-壓電陶瓷, 全欣資訊圖書, 頁7, 年1994.
[24] Q. X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, “Whatmore, R. Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films,” Microwave Theory and Techniques, IEEE Transactions on, pp. 769-778, 2001.
[25] H. L. Hartnagel, A. K. Jain and C. Jagadish, “Semiconducting Transparent
Thin Films,” published by Institute of Physics Publication, 1995.


[26] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by rf magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[27] Y. Igasaki and H. Saito, “The effects of zinc diffusion on the electrical and optical properties of ZnO: Al films prepared by rf reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[28] T. Y. Ma and D. K. Shim, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films.” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[29] 水瑞鐏, “氧化鋅薄膜特性及其在通訊元件與液體感測器上之應用,” 國立成功大學電機工程學系博士班學位論文, 年2002.
[30] 施敏 & 張俊彥, 半導體元件之物理與技術, 儒林, 頁425, 年1990.
[31] R. W. Berry, P. M. Hall and M. T. Harris, “Thin film technology,” Van Nostrand Princeton, New Jersey, 1968.
[32] J. L. Vossen and W. Kern, “Thin film processes II,” Academic Pr, 1991.
[33] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The influence of the reactive gas flow on the properties of AIN sputter-deposited films,” Materials Science and Engineering: A, vol. 140, pp. 696-701, 1991.
[34] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science and Technology, vol. 21, pp. S117-S128.
[35] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” Journal of Vacuum Science and Technology, vol. 11, pp. 666-670, 1974.

[36] K. E. Bean, “Anisotropic etching of silicon,” Electron Devices, IEEE Transactions on, vol. 25, pp. 1185-1193, 1978.
[37] 莊達人, VLSI 製造技術, 高立圖書股份有限公司, 年2003.
[38] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless communications, Academic Press, New York, 1998
[39] J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, “Microsensors, MEMS, and smart devices,” John Wiley & Sons, 2001.
[40] C. Campbell and J. C. Burgess, “Surface acoustic wave devices and their signal processing applications,” J.Acoust.Soc.Am., vol. 89, pp. 1479-1480, 1991.
[41] J. Bowers, B. Khuri‐Yakub and G. Kino, “Broadband efficient thin‐film sezawa wave interdigital transducers,” Appl.Phys.Lett., vol. 36, pp. 806-807, 1980.
[42] S. Petroni, G. Tripoli, C. Combi, B. Vigna, M. De Vittorio, M. Todaro, G. Epifani, R. Cingolani and A. Passaseo, “GaN-based surface acoustic wave filters for wireless communications,” Superlattices and Microstructures, vol. 36, pp. 825-831, 2004.
[43] Y. Takagaki, P. Santos, E. Wiebicke, O. Brandt, H.P. Schonherr and K. Ploog, “Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H–SiC (0001) substrates,” Physical Review B, vol. 66, pp. 155439-1 - 155439-7, 2002.
[44] X. Du, Y. Fu, S. Tan, J. Luo, A. Flewitt, S. Maeng, S. Kim, Y. Choi, D. Lee and N. Park, “ZnO film for application in surface acoustic wave device,” J. Phys.: Conf., pp. 012035-1 – 012035-6, 2007.

[45] 鄭博書, “製作於矽基板之表面聲波振盪器作為紫外光感測之研究,” 國立中山大學電機工程學系碩士班學位論文, 年2008.
[46] R. Ro, S. Y. Chang, R. C. Hwang and D. H. Lee, “Identification of ionic solutions using a SAW liquid sensor.”, Part A: Physical Science and Engineering, vol 23, pp. 810-815, 1999.
[47] C. Campbell, “Surface acoustic wave devices for mobile and wireless communications,” Academic Press, pp. 108-113 ,INC, 1989.
[48] R. Pallas-Areny and J. G. Webster, “Sensors & signal conditioning,” Recherche, vol. 67, pp. 02, 2000.
[49] H. Matthews, “Surface Wave Filters Design, Construction,and Use,” John Wiley &sons, pp. 20 ,1979
[50] D. S. Ballantine, “Acoustic wave sensors: theory, design, and physico-chemical applications,” Academic Pr, 1997.
[51] R. P. O'Toole, S. G. Burns, G. J. Bastiaans and M. D. Porter, “Thin aluminum nitride film resonators: Miniaturized high sensitivity mass sensors,” Anal.Chem., vol. 64, pp. 1289-1294, 1992.
[52] E. Liston, L. Martinu and M. Wertheimer, “Plasma surface modification of polymers for improved adhesion: A critical review,” J.Adhes.Sci.Technol., vol. 7, pp. 1091-1127, 1993.
[53] A. Shoji, T. Fukushima, D. S. Kumar, K. Kashiwagi and Y. Yoshida, “Surface modification of plasma polymerized silicon resin films produced at different gas atmospheres,” Journal of Photopolymer Science and Technology, vol. 19, pp. 241-244, 2006.


[54] S. D. Lee, G. H. Hsiue and C. Y. Kao, “Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma‐induced graft copolymerization,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 34, pp. 141-148, 1996.
[55] F. Garbassi, M. Morra and E. Occhiello, “Polymer surfaces: from physics to technology,” John Wiley & Sons Inc, 1998.
[56] Y. L. Hsieh and M. Wu, “Residual reactivity for surface grafting of acrylic acid on argon glow‐discharged poly (ethylene terephthalate)(PET) films,” J Appl Polym Sci, vol. 43, pp. 2067-2082, 1991.
[57] L. Dai, H. A. W. StJohn, J. Bi, P. Zientek, R. C. Chatelier and H. J. Griesser, “Biomedical coatings by the covalent immobilization of polysaccharides onto gas‐plasma‐activated polymer surfaces,” Surf.Interface Anal., vol. 29, pp. 46-55, 2000.
[58] A. Marmur, “Equilibrium contact angles: Theory and measurement,” Colloids Surf.Physicochem.Eng.Aspects, vol. 116, pp. 55-61, 1996.
[59] J. Badey, E. Espuche, D. Sage, B. Chabert, Y. Jugnet, C. Batier and T. M. Duc, “A comparative study of the effects of ammonia and hydrogen plasma downstream treatment on the surface modification of polytetrafluoroethylene,” Polymer, vol. 37, pp. 1377-1386, 1996.
[60] R. Wang, H. Kreuzer and M. Grunze, “Molecular conformation and solvation of oligo (ethylene glycol)-terminated self-assembled monolayers and their resistance to protein adsorption,” The Journal of Physical Chemistry B, vol. 101, pp. 9767-9773, 1997.


[61] P. Harder, M. Grunze, R. Dahint, G. Whitesides and P. Laibinis, “Molecular conformation in oligo (ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption,” The Journal of Physical Chemistry B, vol. 102, pp. 426-436, 1998.
[62] E. Decker, B. Frank, Y. Suo and S. Garoff, “Physics of contact angle measurement,” Colloids Surf.Physicochem.Eng.Aspects, vol. 156, pp. 177-189, 1999.
[63] D. Kwok and A. Neumann, “Contact angle measurement and contact angle interpretation,” Adv.Colloid Interface Sci., vol. 81, pp. 167-249, 1999.
[64] W. Bigelow, D. Pickett and W. Zisman, “Oleophobic monolayers: I. films adsorbed from solution in non-polar liquids,” J.Colloid Sci., vol. 1, pp. 513-538, 1946.
[65] R. G. Nuzzo and D. L. Allara, “Adsorption of bifunctional organic disulfides on gold surfaces,” J.Am.Chem.Soc., vol. 105, pp. 4481-4483, 1983.
[66] A. Ulman, “Formation and structure of self-assembled monolayers,” Chem.Rev., vol. 96, pp. 1533-1554, 1996.
[67] 張哲魁, 葛威成, 張正宏 & 陳惠民, “自組裝單層膜 (SAM) 技術在新生物晶片上的發展,” 國家奈米元件實驗室奈米通訊, 卷 14, 頁 27-31, 年 2007.
[68] M. D. Porter, T. B. Bright, D. L. Allara and C. E. D. Chidsey, “Spontaneously organized molecular assemblies. 4. structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry,” J.Am.Chem.Soc., vol. 109, pp. 3559-3568, 1987.

[69] A. Ulman, “An introduction to ultrathin organic films: From langmuir blodgett to self assembly (academic, new york, 1991); A. ulman,” Chem.Rev., vol. 96, pp. 1533, 1996.
[70] E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay, ELISA,” The Journal of Immunology, vol. 109, pp. 129-135, 1972.
[71] J.R. Crowther, “The ELISA guidebook,” Humana Pr Inc, 2001.
[72] A. H. Coons, H. J. Creech, R. N. Jones and E. Berliner, “The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody,” J.Immunol., vol. 45, pp. l59-170, 1942.
[73] T. H. Weller and A. H. Coons, “Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro,” Exp.Biol.Med., vol. 86, pp. 789-794, 1954.
[74] 劉泳呈, “發展微流體光碟上之酵素連結免疫吸附法,” 逢甲大學化學工程學系碩士班學位論文, 頁16-20, 年2008.
[75] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, “Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold,” J.Am.Chem.Soc., vol. 113, pp. 7152-7167, 1991.
[76] 楊畯閎, “剪模態氮化鋁薄膜體聲波共振器之液態感測器研製,” 國立中
山大學電機工程學系碩士班學位論文, 頁59- 65, 年2011.
[77] 姜嘉銘, “以雙模態氧化鋅薄膜體聲波共振器作為液態感測器之研究” 國立中山大學電機工程學系碩士班學位論文, 頁23- 24, 年 2011.
[78] 高國陞, “表面聲波元件之頻率及溫度特性之研究,” 國立中山大學電機工程學系博士班學位論文, 年2004.

[79] 林素霞, “氧化鋅薄膜的特性改良及應用之研究,” 國立成功大學材料科學及工程研究所博士班學位論文, 頁 37, 年 2011.
[80] X. Du, Y. Fu, S. Tan, J. Luo, A. Flewitt, W. Milne, D. Lee, N. Park, J. Park and Y. Choi, “ZnO film thickness effect on surface acoustic wave modes and acoustic streaming,” Appl.Phys.Lett., vol. 93, pp. 094105-1 - 094105-3, 2008.
[81] M. Benetti, D. Cannata, F. Di Pictrantonio and E. Verona, “Growth of AlN piezoelectric film on diamond for high-frequency surface acoustic wave devices,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 1806-1811, 2005.
[82] L. Le Brizoual, F. Sarry, O. Elrnazria, P. Alnot, S. Ballandras and T. Pastureaud, “GHz frequency ZnO/Si SAW device,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 55, pp. 442-450, 2008.
[83] L. Le Brizoual, O. Elmazria, F. Sarry, M. El Hakiki, A. Talbi and P. Alnot, “High frequency SAW devices based on third harmonic generation,” Ultrasonics, vol. 45, pp. 100-103, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code