Responsive image
博碩士論文 etd-0809113-005415 詳細資訊
Title page for etd-0809113-005415
論文名稱
Title
物鏡式波長解析表面電漿共振系統於高空間解析度生物量測之應用
Wavelength-Resolved, Objective Lens Based Surface Plasmon Resonance System for High Spatial Resolution Bio-detection Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-31
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
全反射式物鏡、光學微流體系統、表面電漿共振、表面電漿共振顯微術
total interal reflection objectives, surface plasmon resonance microscpe, surface plasmon resonance, optofludics
統計
Statistics
本論文已被瀏覽 5706 次,被下載 0
The thesis/dissertation has been browsed 5706 times, has been downloaded 0 times.
中文摘要
即時的BIA感測晶片廣泛應用於生物醫學檢測,過去所發展的技術,SPR為最有發展之應用。過去表面電漿共振檢測方式,多探討角度量測及圖像式解析,以分辨生物分子進行生理反應後之對比。其中稜鏡系統量測方式,可檢測行專一特性的生物交互作用分析,精準量測非常微弱的光學性質變化,但由於檢測光點面積過大,並無法精細觀測管道內單一區域的特性及反應程度上做辨別。以光纖為基底之SPR感測器具有低成本優勢,但是卻很難與微流道系統整合。角度變化檢測有助於整合微流道系統做即時的檢測,但侷限於相對大的入射光點,與即時的觀測光學影像具有困難度。
本研究提出一個以TIRF物鏡的表面電漿共振系統,結合可替換狹縫晶片之自製光學元件,以取代表面電漿共振稜鏡系統,進行圖像捕捉和波長分辨SPR檢測微應用。面對不同折射率之樣本,可藉由更換光狹縫,調變光源入射離軸距離,取得最佳辨別的量測訊號。為驗證此一想法,以一簡單雷射光路的稜鏡系統,用以確認光學薄膜品質,以鎢絲燈做為燈源,結合全反射物鏡模組於倒立式顯微鏡組中,以激發SPR。研究中選擇MATLAB®做為光學模擬軟體,實驗中可以理論數據,校正系統穩定度與精確度。除了驗證系統可成功量測表面電漿共振訊號外,本研究利用離軸距為5.8 mm之光狹縫,精準量測樣本折射率於1.33到1.36之間之動態變化過程。光線通過所設計的1.00 mm孔徑之光遮片以獲得連續波長的光束。然後光束通過TM模態偏振片,並利用全反射式物鏡激發SPR。以此方法,入射光束可進一步凝結成小光點以提高空間解析度。此外,使用多模態光纖搜集反射光束且以高效能之光譜儀作為SPR分析。當檢測到SPR時,低數值孔徑物鏡使用於即時捕捉圖像。研究結果顯示5.8 mm距離的離軸距離具有較佳的SPR效能。
本研究成功於TIR物鏡上測量到SPR訊號。不論根據不同的入射角度改變off軸距離或是改變樣本的折射率,皆可以觀測SPR波長光強度之散失。此光學架構開發將可建立高空間解析度與高密度晶片系統的使用以整合與降低成本於製作SPR檢測平台。
光學微流體部分,研究中以鈉玻璃作為基板,採取濺鍍系統、表面改質以及蝕刻製程製作玻璃微流體晶片,再於高解析蓋玻片改質後濺鍍上45 nm黃金薄膜做為感測層。藉由填充高折射率耦合油於晶片與物鏡之間,降低光源在界面反射率。管道內注入自組裝薄膜分子進行黃金表面改質,同時以高解析度與高量子效應光譜儀於光路後端收光,切確及時地觀測表面改質過程。
實驗證明系統在50 μm週期結構上可清楚辨識,同時於晶片下方使用CCD拍攝或錄製掃描過程。此外更於單一定點量測不同折射率之樣本,以週期性交錯注入管道中,進行長時間動態量測,其中更利用黃金改質過後之表面官能基抓取酵母菌細胞,即時進行表面電漿共振量測。
Abstract
Real-time biomolecule interaction analysis (BIA) sensor chips are widely used in biomedical testing. Over the developed techniques, surface plasmon resonance shows the most promising for these applications. Optic fiber based SPR sensors exhibit the advantage of low-cost but it is difficult to integrate with microfluidic systems. The angle variation detection is promising to integrate with microfluidic system for real-time detection. However, conventional angle-variation SPR detection schemes are usually limited by the relatively big size of the incident light spot and the difficulty for real-time optical image observation. In addition, an expensive goniometer is required to obtain precise angle measurement. Therefore, it is essential to develop a system for simultaneously optical image observation and SPR detection without using the moving part.
This work presents a TIRF objective-based surface plasmon resonance (SPR) system for simultaneously image capturing and wavelength- resolved SPR detecting for microfluidic applications. The light from a low-cost tungsten bulb passes through a designed light stop and polarizer is used as the light source for SPR detecting. The light spot is reduced to around 15 m after passing through the 60X objective lens, resulting in a higher spatial resolution for SPR detection in microfluidic channels. Moreover, the designed confocal scheme makes the system capable of simultaneously optical observation and SPR detection without scanning the wavelength or switching the optical system. Results show that the developed system is capable of detecting samples of refractive index in the range from 1.0 to 1.38 with a sensitivity of around 3417 nm/RIU. The developed system provides a simple yet high performance method for on-site detecting the SPR spectra anywhere inside a microfluidic device.
The system was constructed under a home-built microscope system. A tungsten bulb was used for the light source for SPR excitation. The light passed through a designed light-stop with a 1.0 mm hole to obtain light beam with continuous wavelength. The light beam then passed through the polarizer (TM mode) and deflect using a TIRF objective lens for SPR excitation. With this approach, the incident light beam can be further condensed into a small light spot such that the spatial resolution can be enhanced.
The system setup for simultaneously image capturing and high spatial SPR detection. The reflected light beam was collected using a multimode optic fiber and analyzed with a high performance spectrometer for SPR analysis. A low N.A. objective lens was used for simultaneously capturing the image while SPR detection. Therefore, microscopic image and SPR analysis can be achieved in a simple system without moving or scanning parts. Results show that the off-axis distance of 5.8 mm has the greater SPR performance.
This study has measured the signal of SPR upon TIR Objective successfully. Whether we changed the d off-axis distance corresponding to a different angle of incidence, or changed in the refractive index of the sample, we all find the obvious SPR wavelength of the light intensity lost. This optical architecture development will create a high spatial resolution and the utilization of high-density chip system which will integrate and reduce the cost of making the SPR measurement stage.
目次 Table of Contents
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
簡寫表 XIII
符號表 XIV
第一章 緒論 1
1.1 研究動機 2
1.2 研究目標 3
1.3 章節概要 4
第二章 基礎原理與文獻回顧 5
2.1 表面電漿波原理 5
2.1.1 漸逝場(Evanescent Field) 5
2.1.2 表面電漿與金屬色散原理與電漿子(Plasmon)理論 6
2.1.3 偏振光學原理馬克斯威方程 9
2.1.4 表面電漿激發原理 13
2.1.4.1 稜鏡耦合方式 13
2.1.4.2 光柵式耦合 16
2.1.4.3 波導耦合(Waveguide coupling) 17
2.2 表面電漿共振激發與量測方式 19
2.2.1 調變角度量測 19
2.2.2 調變波長量測 20
2.2.3 光強度量測 20
2.3 表面電漿於生醫免疫分析之運用 20
2.3.1 薄膜自組裝表面改質與免疫分析 21
2.3.2 表面電漿共振用於生醫檢測之方法 24
2.3.3 表面電漿共振顯微術 26
2.3.4 全反射式物鏡螢光生醫檢測系統 28
第三章光學系統架設與晶片製程 30
3.1 光學系統架設 30
3.1.1 倒立式螢光顯微鏡 30
3.1.2 TIRF表面電漿共振偵測系統原理 32
3.1.3 光遮擋片設計與物鏡基本原理 33
3.1.4 基本實驗架構 34
3.1.5 即時掃描與影像捕捉 35
3.2 晶片製程 36
3.2.1 標準玻璃晶片製程 36
3.2.2 鈉玻璃蝕刻速率探討 37
3.2.3 表面電漿共振金薄膜製程及驗證 39
3.2.4 表面電漿共振生醫晶片製程與設計 41
3.3 光譜儀訊號分析 44
3.3.1 光訊號擷取系統 44
3.3.2 數位訊號處理與模擬方法 46
第四章 實驗結果與討論 51
4.1 金薄膜特性量測 51
4.2 稜鏡式表面電漿共振 52
4.3 物鏡式波長解析表面電漿共振系統量測結果 52
4.3.1 光離軸距離對表面電漿共振之影響 52
4.3.2 折射率改變與表面電漿共振波長 55
4.4 管道內SPR量測 59
4.4.1 表面改質製程與黃金黏著層之貼附能力探討 59
4.4.2 自組裝單分子層之表面改質與生醫量測 60
4.5 動態偵測單點之SPR解析與掃描方式探討 62
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
附錄A 74
附錄B 76
附錄C 77
附錄D 80
參考文獻 References
[1] R. P. Feynman, "There's plenty of room at the bottom," Engineering and Science, vol. 23, pp. 22-36, 1960.
[2] V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab on a Chip, vol. 4, pp. 310-315, 2004.
[3] P. Abgrall and A. Gue, "Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review," Journal of Micromechanics and Microengineering, vol. 17, p. R15, 2007.
[4] D. R. Reyes, D. Iossifidis, P.-A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.
[5] P.-A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, vol. 74, pp. 2637-2652, 2002.
[6] S. Balslev, A. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, et al., "Lab-on-a-chip with integrated optical transducers," Lab on a Chip, vol. 6, pp. 213-217, 2006.
[7] C. Monat, P. Domachuk, and B. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics, vol. 1, pp. 106-114, 2007.
[8] R. L. Rich and D. G. Myszka, "Advances in surface plasmon resonance biosensor analysis," Current Opinion in Biotechnology, vol. 11, pp. 54-61, 2000.
[9] L. A. Lyon, M. D. Musick, and M. J. Natan, "Colloidal Au-enhanced surface plasmon resonance immunosensing," Analytical Chemistry, vol. 70, pp. 5177-5183, 1998.
[10] J. Homola, "Present and future of surface plasmon resonance biosensors," Analytical and Bioanalytical Chemistry, vol. 377, pp. 528-539, 2003.
[11] B. Rothenhäusler and W. Knoll, "Surface plasmon microscopy," Nature, 1988.
[12] M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida, "Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy," Biochemical and Biophysical Research Communications, vol. 235, pp. 47-53, 1997.
[13] B. Huang, F. Yu, and R. N. Zare, "Surface plasmon resonance imaging using a high numerical aperture microscope objective," Analytical Chemistry, vol. 79, pp. 2979-2983, 2007.
[14] S. Otsuki and M. Ishikawa, "Wavelength-scanning surface plasmon resonance imaging for label-free multiplexed protein microarray assay," Biosensors and Bioelectronics, vol. 26, pp. 202-206, 2010.
[15] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," Electrical Engineers, Proceedings of the Institution of, vol. 113, pp. 1151-1158, 1966.
[16] J. D. Jackson and R. F. Fox, "Classical electrodynamics," American Journal of Physics, vol. 67, p. 841, 1999.
[17] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light: CUP Archive, 1999.
[18] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical Review B, vol. 6, p. 4370, 1972.
[19] C. Kittel and B. C. Kittel, "Introduction to solid state physics," 1986.
[20] S. A. Maier, Plasmonics: fundamentals and applications: Springer, 2007.
[21] L. Novotny and B. Hecht, Principles of nano-optics: Cambridge university press, 2012.
[22] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Zeitschrift für Physik, vol. 216, pp. 398-410, 1968.
[23] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light(Surface plasma waves excitation by light and decay into photons applied to nonradiative modes)," Zeitschrift Fuer Naturforschung, Teil A, vol. 23, p. 2135, 1968.
[24] R. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, pp. 396-402, 1902.
[25] L. Rayleigh, "On the dynamical theory of gratings," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 79, pp. 399-416, 1907.
[26] R. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, p. 874, 1957.
[27] S. K. Srivastava, R. Verma, and B. D. Gupta, "Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol," Sensors and Actuators B: Chemical, vol. 153, pp. 194-198, 2011.
[28] R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, vol. 74, pp. 106-111, 2001.
[29] A. Blawas and W. Reichert, "Protein patterning," Biomaterials, vol. 19, pp. 595-609, 1998.
[30] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chemical reviews, vol. 105, pp. 1103-1170, 2005.
[31] M. Zharnikov, A. Küller, A. Shaporenko, E. Schmidt, and W. Eck, "Aromatic self-assembled monolayers on hydrogenated silicon," Langmuir, vol. 19, pp. 4682-4687, 2003.
[32] T. L. Niederhauser, Y. Y. Lua, G. Jiang, S. D. Davis, R. Matheson, D. A. Hess, et al., "Arrays of Chemomechanically Patterned Patches of Homogeneous and Mixed Monolayers of 1‐Alkenes and Alcohols on Single Silicon Surfaces," Angewandte Chemie International Edition, vol. 41, pp. 2353-2356, 2002.
[33] C. E. Taylor and D. K. Schwartz, "Octadecanoic acid self-assembled monolayer growth at sapphire surfaces," Langmuir, vol. 19, pp. 2665-2672, 2003.
[34] D. L. Allara and R. G. Nuzzo, "Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface," Langmuir, vol. 1, pp. 45-52, 1985.
[35] T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, "Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process," Journal of the American Chemical Society, vol. 123, pp. 12798-12801, 2001.
[36] A. K. Salem, P. C. Searson, and K. W. Leong, "Multifunctional nanorods for gene delivery," Nature materials, vol. 2, pp. 668-671, 2003.
[37] N. S. Birenbaum, B. T. Lai, C. S. Chen, D. H. Reich, and G. J. Meyer, "Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces," Langmuir, vol. 19, pp. 9580-9582, 2003.
[38] H. G. Chen, X. D. Wu, Q. Q. Yu, S. R. Yang, D. P. Wang, and W. Z. Seen, "Self‐assembled Monolayers of n‐Hexadecanoic Acid and α‐Hydroxyl n‐Hexadecanoic Acid on Titanium Surfaces," Chinese Journal of Chemistry, vol. 20, pp. 1467-1471, 2002.
[39] M. R. Linford and C. E. Chidsey, "Alkyl monolayers covalently bonded to silicon surfaces," Journal of the American Chemical Society, vol. 115, pp. 12631-12632, 1993.
[40] H.-J. Himmel, M. Kaschke, P. Harder, and C. Wöll, "Adsorption of organic monolayers on pyrite (FeS2)(100)," Thin Solid Films, vol. 284, pp. 275-280, 1996.
[41] C.-M. Ruan, T. Bayer, S. Meth, and C. N. Sukenik, "Creation and characterization of n-alkylthiol and n-alkylamine self-assembled monolayers on 316L stainless steel," Thin Solid Films, vol. 419, pp. 95-104, 2002.
[42] D. Kanis, C. A. Mirkin, and J. T. McDevitt, "Molecular Control Over the Interfacial Properties of High-T (c) Superconductors," DTIC Document2000.
[43] C. F. Landes, M. Braun, and M. A. El-Sayed, "On the nanoparticle to molecular size transition: Fluorescence quenching studies," The Journal of Physical Chemistry B, vol. 105, pp. 10554-10558, 2001.
[44] S. Frey, A. Shaporenko, M. Zharnikov, P. Harder, and D. Allara, "Self-assembled monolayers of nitrile-functionalized alkanethiols on gold and silver substrates," The Journal of Physical Chemistry B, vol. 107, pp. 7716-7725, 2003.
[45] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold," Journal of the American Chemical Society, vol. 113, pp. 7152-7167, 1991.
[46] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," Journal of the American Chemical Society, vol. 123, pp. 1471-1482, 2001.
[47] S. A. Harfenist, Z. Wang, M. M. Alvarez, I. Vezmar, and R. L. Whetten, "Highly oriented molecular Ag nanocrystal arrays," The Journal of Physical Chemistry, vol. 100, pp. 13904-13910, 1996.
[48] F. Laffineur, N. Couturier, J. Delhalle, and Z. Mekhalif, "Effect of the solvent on the formation of< i> n</i>-dodecanethiol films on a polycrystalline Ag 90Ni10 substrate," Applied Surface Science, vol. 212, pp. 452-457, 2003.
[49] A. C. Templeton, W. P. Wuelfing, and R. W. Murray, "Monolayer-protected cluster molecules," Accounts of Chemical Research, vol. 33, pp. 27-36, 2000.
[50] Y.-S. Shon, G. B. Dawson, M. Porter, and R. W. Murray, "Monolayer-protected bimetal cluster synthesis by core metal galvanic exchange reaction," Langmuir, vol. 18, pp. 3880-3885, 2002.
[51] N. N. Mamedova, N. A. Kotov, A. L. Rogach, and J. Studer, "Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect," Nano Letters, vol. 1, pp. 281-286, 2001.
[52] M. A. Marcus, W. Flood, M. Stiegerwald, L. Brus, and M. Bawendi, "Structure of capped cadmium selenide clusters by exafs," The Journal of Physical Chemistry, vol. 95, pp. 1572-1576, 1991.
[53] H. Döllefeld, K. Hoppe, J. Kolny, K. Schilling, H. Weller, and A. Eychmüller, "Investigations on the stability of thiol stabilized semiconductor nanoparticles," Physical Chemistry Chemical Physics, vol. 4, pp. 4747-4753, 2002.
[54] T. Løver, W. Henderson, G. A. Bowmaker, J. M. Seakins, and R. P. Cooney, "Functionalization and capping of a cds nanocluster: a study of ligand exchange by electrospray mass spectrometry," Chemistry of Materials, vol. 9, pp. 1878-1886, 1997.
[55] S. Ye, S. Morita, G. Li, H. Noda, M. Tanaka, K. Uosaki, et al., "Structural changes in poly (2-methoxyethyl acrylate) thin films induced by absorption of bisphenol A. An infrared and sum frequency generation (SFG) study," Macromolecules, vol. 36, pp. 5694-5703, 2003.
[56] S. Chen, L. A. Truax, and J. M. Sommers, "Alkanethiolate-protected PbS nanoclusters: synthesis, spectroscopic and electrochemical studies," Chemistry of materials, vol. 12, pp. 3864-3870, 2000.
[57] S. M. Lee, S. N. Cho, and J. Cheon, "Anisotropic shape control of colloidal inorganic nanocrystals," Advanced Materials, vol. 15, pp. 441-444, 2003.
[58] F. P. Zamborini, S. M. Gross, and R. W. Murray, "Synthesis, characterization, reactivity, and electrochemistry of palladium monolayer protected clusters," Langmuir, vol. 17, pp. 481-488, 2001.
[59] S. Gomez, L. Erades, K. Philippot, B. Chaudret, V. Collière, O. Balmes, et al., "Platinum colloids stabilized by bifunctional ligands: self-organization and connection to goldElectronic supplementary information (ESI) available: experimental and characterization details; Schemes 1 and 2; Figs. 1–4; Graphical Abstract. " Chemical Communications, pp. 1474-1475, 2001.
[60] G. Viau, R. Brayner, L. Poul, N. Chakroune, E. Lacaze, F. Fievet-Vincent, et al., "Ruthenium nanoparticles: size, shape, and self-assemblies," Chemistry of materials, vol. 15, pp. 486-494, 2003.
[61] K. Chen, F. Xu, C. A. Mirkin, R.-K. Lo, K. Nanjundaswamy, J.-P. Zhou, et al., "Do Alkanethiols Adsorb onto the Surfaces of Tl-Ba-Ca-Cu-O-Based High-Temperature Superconductors? The Critical Role of H2O Content on the Adsorption Process," Langmuir, vol. 12, pp. 2622-2624, 1996.
[62] F. Sinapi, L. Forget, J. Delhalle, and Z. Mekhalif, "Self-assembly of (3-mercaptopropyl) trimethoxysilane on polycrystalline zinc substrates towards corrosion protection," Applied Surface Science, vol. 212, pp. 464-471, 2003.
[63] A. R. Noble-Luginbuhl and R. G. Nuzzo, "Assembly and characterization of SAMs formed by the adsorption of alkanethiols on Zinc selenide substrates," Langmuir, vol. 17, pp. 3937-3944, 2001.
[64] M. Suzuki, T. Miyazaki, H. Hisamitsu, Y. Kadoma, and Y. Morioka, "Study on chemical reaction of methylthiirane on gold colloid by surface-enhanced Raman scattering," Langmuir, vol. 15, pp. 7409-7410, 1999.
[65] E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara, and M. D. Porter, "Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups," Langmuir, vol. 4, pp. 365-385, 1988.
[66] M. Venkataramanan, G. Skanth, K. Bandyopadhyay, K. Vijayamohanan, and T. Pradeep, "Self-assembled monolayers of two aromatic disulfides and a diselenide on polycrystalline silver films: an investigation by sers and XPS," Journal of Colloid and Interface Science, vol. 212, pp. 553-561, 1999.
[67] L. A. Porter, D. Ji, S. L. Westcott, M. Graupe, R. S. Czernuszewicz, N. J. Halas, et al., "Gold and silver nanoparticles functionalized by the adsorption of dialkyl disulfides," Langmuir, vol. 14, pp. 7378-7386, 1998.
[68] Y.-S. Shon, C. Mazzitelli, and R. W. Murray, "Unsymmetrical disulfides and thiol mixtures produce different mixed monolayer-protected gold clusters," Langmuir, vol. 17, pp. 7735-7741, 2001.
[69] T. M. Willey, A. L. Vance, C. Bostedt, T. van Buuren, R. W. Meulenberg, L. J. Terminello, et al., "Surface structure and chemical switching of thioctic acid adsorbed on Au (111) as observed using near-edge X-ray absorption fine structure," Langmuir, vol. 20, pp. 4939-4944, 2004.
[70] C. E. Jordon, B. L. Frey, S. Kornguth, and R. M. Corn, "Characterization of poly-L-lysine adsorption onto alkanethiol-modified gold surfaces with polarization-modulation Fourier transform infrared spectroscopy and surface plasmon resonance measurements," Langmuir, vol. 10, pp. 3642-3648, 1994.
[71] B. Johnsson, S. Löfås, and G. Lindquist, "Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors," Analytical Biochemistry, vol. 198, pp. 268-277, 1991.
[72] B. Johnsson, S. Löfås, G. Lindquist, Å. Edström, R. M. M. Hillgren, and A. Hansson, "Comparison of methods for immobilization to carboxymethyl dextran sensor surfaces by analysis of the specific activity of monoclonal antibodies," Journal of Molecular Recognition, vol. 8, pp. 125-131, 1995.
[73] Y.-H. Rogers, P. Jiang-Baucom, Z.-J. Huang, V. Bogdanov, S. Anderson, and M. T. Boyce-Jacino, "Immobilization of oligonucleotides onto a glass support via disulfide bonds: a method for preparation of DNA microarrays," Analytical Biochemistry, vol. 266, pp. 23-30, 1999.
[74] N. Zammatteo, L. Jeanmart, S. Hamels, S. Courtois, P. Louette, L. Hevesi, et al., "Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays," Analytical Biochemistry, vol. 280, pp. 143-150, 2000.
[75] T. Bertok, A. Sediva, J. Katrlik, P. Gemeiner, M. Mikula, M. Nosko, et al., "Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles," Talanta, 2013.
[76] S. Nizamov and V. M. Mirsky, "Self-referencing SPR-biosensors based on penetration difference of evanescent waves," Biosensors and Bioelectronics, vol. 28, pp. 263-269, 2011.
[77] A. D. Taylor, J. Ladd, S. Etheridge, J. Deeds, S. Hall, and S. Jiang, "Quantitative detection of tetrodotoxin (TTX) by a surface plasmon resonance (SPR) sensor," Sensors and Actuators B: Chemical, vol. 130, pp. 120-128, 2008.
[78] B. Rothenhaeusler and W. Knoll, "Surface-plasmon microscopy," Nature, vol. 332, pp. 615-617, 1988.
[79] W. Hickel and W. Knoll, "Surface plasmon microscopy of lipid layers," Thin Solid Films, vol. 187, pp. 349-356, 1990.
[80] M. Piliarik, H. Vaisocherová, and J. Homola, "A new surface plasmon resonance sensor for high-throughput screening applications," Biosensors and Bioelectronics, vol. 20, pp. 2104-2110, 2005.
[81] NIKON. NIKON TE2000 inverted microscope manual http://wikisites.mcgill.ca/djgroup/images/5/57/Inverted_microscope_nikon_manual.pdf. Available: http://wikisites.mcgill.ca/djgroup/images/5/57/Inverted_microscope_nikon_manual.pdf
[82] OCEANOPTIC. QE65000 Data Sheet. Available: http://www.oceanoptics.com/technical/engineering/OEM Data Sheet -- QE65000.pdf
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.197.212
論文開放下載的時間是 校外不公開

Your IP address is 3.142.197.212
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code