Responsive image
博碩士論文 etd-0809113-080332 詳細資訊
Title page for etd-0809113-080332
論文名稱
Title
鐵礦燒結實驗與數值模型建立
Iron Ore Sintering Experiment and Numerical Model Development
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-19
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
數值模型、鐵礦燒結、燒結製程、燒結模擬、孔隙介質
iron ore sinter, numerical model, sinter process, porous media, sinter simulation
統計
Statistics
本論文已被瀏覽 5680 次,被下載 866
The thesis/dissertation has been browsed 5680 times, has been downloaded 866 times.
中文摘要
鐵礦燒結為煉鐵製程中的重要步驟之一,其包含了燃燒反應、相變化、以及孔隙介質內的熱傳及質傳等現象。本研究主要分為實驗量測和數值模擬二個部分:(1)實驗量測部分是利用中鋼公司現有的燒結杯實驗設備進行實驗量測,實驗所量測之數據,將提供數值模型所需之參數修正及驗證。(2)數值模擬部分為建立一燒結數值模型,配合實驗所量測之相關參數,使模擬結果更具可靠性,並利用此數值模型來探討各參數的影響,進一步了解燒結現象,有利於提升燒結技術。
實驗主要量測內容包含了造粒後生料之體密度、燒結料層內之溫度變化、燒結過程中進氣端與排氣端之壓差和入口空氣之流速,以及粗墊料、細墊料和燒結生料等料層,在不同高度下與流速及壓差之關係。並將量測結果以線性回歸法找出模型內孔隙介質壓力損耗所需之參數。在燒結數值模型方面,考慮了能量、動量、質量及組份守恆方程式,以及燒結過程中重要的熱傳及質傳現象-水分的蒸發與凝結以及細焦炭的燃燒放熱。細焦炭燃燒放熱為燒結製程中的熱量來源,使燒結料層達到燒結所需的溫度(1200℃~1400℃);而燒結料層內的水分會於高溫區前緣吸熱蒸發,至下游低溫區後凝結放熱,該現象為燒結料層內重要的質傳及熱傳現象。
研究顯示此模型可成功地模擬細焦炭的燃燒放熱、水分的蒸發與凝結以及燒結料層內高溫燒結區的移動等現象。模擬結果發現水分的相變化熱傳,會使尚未燒結料層內的溫度很快地升至50-60℃左右,模擬結果與量測結果於燒結杯內之溫度變化有良好的一致性。
Abstract
Iron ore sintering is one of the important steps in the Iron making process, including combustion reaction, phase chane, and the heat transfer and mass transfer in the porous media. This study is mainly divided into two parts, experimental measurement and numerical simulation: (1) The experimental measurement part is to use the existing sinter cup to extract the experimental data, and the data are used in the parameter correction and the verification of the numerical results. (2)The numerical simulation part is to establish a sintering numerical model, corresponding the experimental setup. The model parameters and results are adjusted and compared with the measured data to make the simulation reliable. In the end, this numerical models is used to predict the effect of several parameters to further understand the sintering phenomena and improve the sintering technology.
This experiment includes the bulk density measurements of raw material after the granulation process, the temperature variation inside the sinter bed, the inlet air flow speed and pressure drop of the sintering cup in the sintering process. In addition, the air flow speed and pressure drop at different height are also measured at room temperature for the coarse litter, fine litter and sintering raw material. The measured data is processed by linear regression methods to find the pressure loss coefficients of the porous medium inside the model.
This numerical model considers the conservations of mass, momentum, energy and species. The heat and mass transfer in the sintering process includes the water evaporation and condensation and fine coke combustion heat release. The coke combustion heat release is the main heat source in the sintering process, heating the sinter bed to the desired temperature (1200℃~1400℃). Water in the sinter bed is evaporated by absorbing heat at the leading edge of the high temperature area, and condensed by releasing heat in the downstream low temperature area, which is also the significant phenomenon inside the sinter bed.
This study shows this model can successfully simulate the fine coke combustion, water evaporation and condensation and the movement of high temperature sinter area in sinter bed. Simulation shows the phase change of waterl cause the temperature quickly rise to 50-60℃ in the dowsteram. This simulation shows the good consistency in the temperature variation between the simulation result and the measured data.
目次 Table of Contents
誌謝 ii
摘要 iv
Abstract vi
目錄 viii
圖目錄 xi
表目錄 xv
符號說明 xvi
第一章 序論 1
1.1 前言 1
1.2 鐵礦燒結製程背景 2
1.3 文獻回顧 6
1.4 研究目的 10
第二章 實驗設備及方法 12
2.1 實驗儀器與設備 12
2.1.1 燒結前之備料設備 12
2.1.2 燒結時之設備 13
2.2 設備改良與比較 16
2.2.1 燒結杯改良 ( 3孔→5孔 ) 16
2.2.2 Thermocouple之改良 17
2.2.3 改良佈料工具 18
2.2.4改良後之優點 19
2.2.5實驗量測記錄系統之改良 20
2.3 實驗規劃 21
2.3.1燒結生料之造粒 22
2.3.2燒結佈料 23
2.3.3燒結實驗 26
第三章 數值模型 30
3.1數學模型 30
3.2 數值方法 36
第四章 結果與討論 38
4.1燒結杯實驗量測結果 38
4.1.1初步實驗量測結果 38
4.1.2 燒結杯實驗側墊料之調整 41
4.2料層高度與流速及壓差之關係 46
4.3 模擬結果 51
4.3.1 模型參數探討 52
4.3.1.1 模型最佳參數探討 52
4.3.1.2 模型參數靈敏度探討 56
4.3.2模擬結果與實驗結果 63
第五章 結論與未來展望 68
5.1 結論 68
5.2 未來研究展望 70
參考文獻 71
附錄A 74
附錄B 77
參考文獻 References
[1] J. Si, G. Lou, Z. Wen and X. Liu, Mathematical Model and Experimental Research of Heat Transfer Process in Sintering, University of Science and Technology Beijing, Beijing, China, 2008
[2] N. Hayashi, S. V. Komarov and E. Kasai, Heat Transfer Analysis of Mosaic Embedding Iron Ore Sintering (MEBIOS) Process, ISIF International 49 (2009): 681-686
[3] E. Kasai, S. Komarov, K. Nushiro and M. Nakano, Design of Bed Structure Aiming the Control of Void Structure Formed in the Sinter Cake, ISIJ International 45 (2005): 538-543
[4] P. Hou, S. Choi, W. Yang, and E. Choi, H. Kang, Application of Intra-Particle Combustion Model for Iron Ore Sintering Bed, Materials Sciences and Applications, 2011, 2, 370-380
[5] W. Yang, C. Ryu, S. Choi, E. Choi, D.W. Ri and W. Huh, Mathematical Model of Thermal Processes in an Iron Ore Sintering Bed, Metals and Materials International 10 (2004): 493-500.
[6] W. Yang, C. Ryu, S. Choi, E. Choi, D.W. Ri and W. Huh, Modeling of Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple solid Phase, ISIJ International 44 (2004): 492-499.
[7] R. Venkataramana, S.S. Gupta, P.C. Kapur, N. Ramachandran, Mathematical Modelling and Simulation of the Iron Ore Sintering Process, Tata Search, 1998.
[8] H. Yamaoka, T. Kawaguchi, Development of a 3-D Sinter Process Mathematical Simulation Model, ISIJ International 45(2005), 4, 522-531.
[9] J. Mitterlehner, G. Loeffler, F. Winter, H. Hofbauer, H. Schmid, E. Zwittag, T. H. Buergler, O. Pammer and H. Stlasny, Modeling and Simulation of Heat Front Propagation in the Iron Ore Sintering Process, ISIJ International 44 (2004), 1, 11–20.
[10] K. Mitra, N. K. Nath, Analysis of Two-Layer Sintering Process for Different Bed Heights by Genetic Algorithm, World Congress 16 (2005), Part 1.
[11] A. Cores, A. Babich, M. MUÑIZ, S. FERREIRA, J. Mochon, The Influence of Different Iron Ores Mixtures Composition on the Quality of Sinter, ISIJ International 50 (2010), 8, 1089–1098.
[12] M. Gu, N. Selvarasu, F. Huang, P. Chaubal, C. Zhou, Numerical Analysis on the Coke Combustion Inside Raceway, AISTech Conference Proceedings, 2007 .
[13] P. Hou, S. Choi, E. Choi, H. Kang, Improved Distribution of Fuel Particles in Iron Ore Sintering Process, Ironmaking & Steelmaking 38 (2011), 5, 379-385(7).
[14] N. Oyama, Y. Iwami, T. Yamamoto, S. Machida, T. Higuchi, H. Sato, M. Sato, K. Takeda, Y. Watanabe, M. Shimizu, K. Nishioka, Development of Secondary-fuel Injection Technology for Energy Reduction in the Iron Ore Sintering Process, ISIJ International 51 (2011), 6, 913–921.
[15] S. Ergun: Chem. Eng. Prog., 48 (1952), No. 2, 89.
[16]劉端祺、宋明章, “建立中鋼公司燒結過程中之溫度模式”, 國立台灣工業技術學院研究報告書, 中華民國74年6月29日.
[17] 戴昌賢, “中鋼一號燒結場冷卻機散熱均勻化設計研究”, 結案報告, 中華民國97年10月.
[18] 蕭綱衡,“鐵礦及燒結製程”, 台灣大學材料所-鐵礦及燒結製程 課程講義, 98年05月06日
[19] 台灣因應氣候變化綱要公約資訊網 (http://www.tri.org.tw/unfccc/index.htm)
[20] R. J. Kee, F.M. Rupley and J. A. Miller, The CHEMKIN Thermodynamic Data Base, SAND 87-8215B, 1987.
[21] ANSYS FLUENT 14, Lebanon, N.H., 2011.
[22] M. F. Modest, Radiative Heat Transfer, Second Edition.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code