Responsive image
博碩士論文 etd-0809113-091525 詳細資訊
Title page for etd-0809113-091525
論文名稱
Title
微流體晶片整合離子選擇電極於電化學式血清中尿素檢測
Microfluidic Chip Integrated with Ion Selective Electrode for Electrochemical Detection of Urea in Serum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-31
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
尿素感測器、表面張力、電化學偵測、微流體晶片、離子選擇電極、離子載體、銨離子
Urea sensor, Surface tension force, Urease, Electrochemical detection, Ionophores, Microfluidic chip, Ammonium ion, Ion selective electrode
統計
Statistics
本論文已被瀏覽 5690 次,被下載 0
The thesis/dissertation has been browsed 5690 times, has been downloaded 0 times.
中文摘要
本研究發展一種PVC離子選擇薄膜製作技術,其使用表面張力將薄膜成型於微流體晶片中,做為水溶液銨離子感測之用。而摻雜了銨離子載體的PVC,藉由表面張力的作用,將成型固化後的薄膜嵌在為結構間。在晶片微結構間成型的薄膜,隨著厚度越薄與較大的感測面積,可以明顯的提高感測器的效能。此外,本研究進一步將生物分子尿素酶,摻雜在離子選擇薄膜上,通過薄膜的尿素分子會被酵素所催化,轉換成銨離子擴散過薄膜,經由電化學檢測進行分析。
本研究為了提高離子選擇電極的感測效能,實驗進行使用較薄的感測薄膜,以及增加薄膜感測面積,從電子顯微鏡拍攝的SEM橫截面圖可以發現,離子選擇薄膜成功的固定到管道結構中,薄膜表面呈現多孔隙結構又利於離子擴散。此外,利用循環伏安法來檢測不同濃度下的氯化銨樣本,結果可得到明顯的氧化還原訊號,證實了將離子選擇電極整合到微流體晶片檢測銨離子的可行性,此晶片可從濃度範圍10-4 到 103 ppm間,取的良好的線性關係。
本研究製作出的銨離子感測器,檢測銨離子的濃度的極限為0.1 ppb,相較於商業的離子選擇電極的檢測極限0.1 ppm,其濃度檢測範圍下限顯著降低。且於使用感測晶片量測時,對於不同濃度下氯化銨的反應時間,其達到電流值的95%只需要4秒鐘,而反應時間也比市售電極更靈敏。
本研究進一步製備摻雜了尿素酶的離子選擇薄膜,相較於傳統的離子選擇薄膜,其薄膜的厚度更薄(<10 µm)而且具有更大的感測面積,基於此原因,特定離子通過薄膜的速率更加快速,並且能顯著地提升感測效能。根據實驗結果顯示,本研究開發的微晶片感測器,結合酵素酶摻雜的離子選擇薄膜,來量測尿素樣本溶液,濃度範圍從10-1到103 ppm (R2~0.9102)間,擁有良好的靈敏度。此外尿素感測器的檢測極限最低可以達到0.1 ppm (S/N=3),經本研究實驗之結果證明,在檢測濃度1 ppm的尿素,只需要8秒鐘,即可達到反應電流值的95%,其檢測速率高過於市售的離子選擇電極。綜觀上述,本研究開發的酶摻雜離子選擇薄膜的感測器,提供一個低成本且高性能的方法,應用於及時生物催化反應與生物樣本的檢測上。
Abstract
This research presents a novel technique for self-forming successive polymeric ion-selective membrane in a microfluidic chip utilizing surface tension force for detecting ammonium ions. Surface tension force on microstructures is used to trap trace amount of polymer liquid doped with ammonium ionophors to form a thin ion-selective membrane. Due to the thinner thickness and higher surface-area of the formed membrane, the sensing performance can be greatly enhanced. Since bio-reactive enzyme of urease is immobilized on the ISM, passing urea molecules are converted into ammonium ion then diffuse through the ISM for further electrochemical detection.
In order to improve the sensing performance of ISE, a thinner membrane with larger diffusion area is essential. The SEM image shows the cross-sectional views of the ion-channels where the ion selective membranes were formed. Result shows that the ion-selective membrane was successfully formed inside the ion-channel. Utilizing the cyclic voltammetry for detecting different concentrations of NH4Cl(aq). Significant redox signals confirmed that the feasibility of the microchip integrated with ISE. A good linear current response was obtained for detecting ammonia ion in the concentration range of 10-4 to 103 ppm.
The sensor was measured with a detection limit of 0.1 ppb which is much lower than conventional commercial ISE products of around 0.1 ppm. The time response for the developed chip for detecting NH4Cl(aq) of various concentrations reached 95% of the current response in seconds which is also faster than commercial ISE.
The produced ED-ISM has a thinner thickness (< 10 μm) and higher surface-area than typical ISM for such that the sensing performance can be greatly enhanced due to the faster ion diffusion through the membrane. Experimental results show that the developed microchip device with the ED-ISM has good response in the concentration range from 10-1 to 103 ppm (R2 ~ 0.9102). The limit of detection is measured to be as low as 0.1 ppm (S/N=3). Result also indicates that the response reached 95% in 8 s for detecting 1 ppm of urea using the developed microchip device, which is much faster than that obtained using typical commercial ion selective electrode. The developed microchip with ED-ISM provides a low-cost yet high performance way for on-site reaction and detection of bio-samples.
目次 Table of Contents
致謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
符號表 xiii
簡寫表 xv
第一章 緒論 1
1.1 研究背景 1
1.2 離子感測器 2
1.2.1 離子選擇電極 2
1.2.2 離子選擇電極發展 5
1.3 電化學 6
1.3.1 電化學電極系統 7
1.4 微流體離子感測器 8
1.4.1 電化學式離子感測器 11
1.5 生物感測器 14
1.5.1 尿素生理機制 15
1.6 動機與目的 18
1.7 論文架構 20
第二章 選擇性離子感測器原理 22
2.1 銨離子選擇電極特性與應用 22
2.2 離子感測器原理 24
2.2.1 能斯特方程式 24
2.2.2 離子干擾 26
2.3 酵素薄膜固定方式 28
第三章 材料與方法 31
3.1 微流體晶片製作 31
3.2 離子選擇電極晶片設計與製作 32
3.2.1 平面電極晶片製作 32
3.2.2 微流體管道製作流程 33
3.2.3 晶片製作 35
3.3 實驗藥品 37
3.3.1 實驗溶液配置 37
3.3.2 銨離子薄膜製備 38
3.3.3 酵素感測膜製備 38
3.4 實驗架構流程 39
第四章 實驗結果與討論 42
4.1 離子選擇電極微流體晶片 42
4.1.1 離子選擇電極效能探討 42
4.1.2 管道內離子選擇膜成型 44
4.1.3 離子選擇膜電化學檢測 45
4.1.4 離子選擇電極檢測極限 46
4.1.5 離子干擾特性評估 48
4.1.6 離子選擇電極反應時間量測 49
4.1.7 離子選擇膜厚評估 50
4.1.8 不同厚度薄膜反應時間 51
4.2 生物樣本之偵測評估 52
4.2.1 尿素表面形貌探討 53
4.2.2 酵素薄膜即時催化反應評估 55
4.2.3 電化學於尿素檢測 56
4.2.4 尿素酶摻雜電極檢測極限 57
4.2.5 血清中尿素偵測 58
4.2.6 肌酐酸酶表面形貌評估 59
4.2.7 偵測極限評估 60
第五章 結論與未來展望 61
5.1 結論 61
5.2 未來展望 64
參考文獻 65
自述 71
參考文獻 References
[1] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: a low-cost negative resist for MEMS," Journal of Micromechanics and Microengineering, vol. 7, pp. 121, 1997.
[2] C. Eggenstein, M. Borchardt, C. Diekmann, B. Gründig, C. Dumschat, K. Cammann, M. Knoll, and F. Spener, "A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer," Biosensors and Bioelectronics, vol. 14, pp. 33-41, 1999.
[3] P. D'Orazio, "Biosensors in clinical chemistry," Clinica Chimica Acta, vol. 334, pp. 41-69, 2003.
[4] B. A. Cornell, V. Braach-Maksvytis, L. King, P. Osman, B. Raguse, L. Wieczorek, and R. Pace, "A biosensor that uses ion-channel switches," Nature, vol. 387, pp. 580-583, 1997.
[5] W. E. Morf, "The principles of ion-selective electrodes and of membrane transport," vol. 246: Elsevier New York:, 1981.
[6] E. Bakker, P. Bühlmann, and E. Pretsch, "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics," Chemical Reviews, vol. 97, pp. 3083-3132, 1997.
[7] P. Bühlmann, E. Pretsch, and E. Bakker, "Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors," Chemical Reviews, vol. 98, pp. 1593-1687, 1998.
[8] E. Bakker, P. Bühlmann, and E. Pretsch, "Polymer Membrane Ion‐Selective Electrodes–What are the Limits?," Electroanalysis, vol. 11, pp. 915-933, 1999.
[9] E. Bakker and E. Pretsch, "Peer Reviewed: The new wave of ion-selective electrodes," Analytical Chemistry, vol. 74, pp. 420-426, 2002.
[10] D. Gourley, "Glass Electrodes for Hydrogen and Other Cations. Principles and Practice," Journal of Medicinal Chemistry, vol. 10, pp. 990-990, 1967.
[11] C. Fuchs, "Solid-state ion-selective electrodes in clinical chemistry," Koryta, J.: Medical and biological applications of electrochemical devices, pp. 93-108, 1980.
[12] E. Bakker, "Selectivity of liquid membrane ion‐selective electrodes," Electroanalysis, vol. 9, pp. 7-12, 1997.
[13] Y. C. Wei, L. M. Fu, and C. H. Lin, "Electrophoresis separation and electrochemical detection on a novel thread-based microfluidic device," Microfluidics and Nanofluidics, vol. 14, pp. 723-730, 2013.
[14] T. Y. Chiang, L. M. Fu, C. H. Tsai, and C. H. Lin, "Ion-selective membrane formed in a microfluidic chip utilizing surface tension force for high sensitive ammonia ion sensing," in Proceedings MicroTAS ‘12 Conference, 2012.
[15] C. M. Chen, G. L. Chang, and C. H. Lin, "Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes," Journal of Chromatography A, vol. 1194, pp. 231-236, 2008.
[16] Y. Chuang, S. Ju, and C. Lin, "Novel palladium nanorod electrode ensemble for electrochemical evaluation of hydrogen adsorption," in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 2011, pp. 166-169.
[17] J. W. Ross, "Calcium-Selective Electrode with Liquid Ion Exchanger," Science, vol. 156, pp. 1378-1379, 1967.
[18] G. Goodfellow and H. Webber, "The determination of ammonia in boiler feed-water with an ammonium-selective glass electrode," Analyst, vol. 97, pp. 95-103, 1972.
[19] J. Wang, M. P. Chatrathi, B. M. Tian, and R. Polsky, "Microfabricated electrophoresis chips for simultaneous bioassays of glucose, uric acid, ascorbic acid, and acetaminophen," Analytical Chemistry, vol. 72, pp. 2514-2518, 2000.
[20] K. T. Liao, C. M. Chen, H. J. Huang, and C. H. Lin, "Poly(methyl methacrylate) microchip device integrated with gold nanoelectrode ensemble for in-column biochemical reaction and electrochemical detection," Journal of Chromatography A, vol. 1165, pp. 213-218, 2007.
[21] I. Isildak, O. Cubuk, M. Altikatoglu, M. Yolcu, V. Erci, and N. Tinkilic, "A novel conductometric creatinine biosensor based on solid-state contact ammonium sensitive PVC–NH2 membrane," Biochemical Engineering Journal, vol. 62, pp. 34-38, 2012.
[22] M. J. Syu and Y. S. Chang, "Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix," Biosensors and Bioelectronics, vol. 24, pp. 2671-2677, 2009.
[23] T. Y. Chiang and C. H. Lin, "Enzyme-doped ion selective membrane (ED-ISM) formed with surface force and microstrucures for high perforlance urea detection," in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on, 2013, pp. 1171-1174.
[24] A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip," Talanta, vol. 50, pp. 219-226, 1999.
[25] D. Martorell, E. Martinez-Fabregas, J. Bartroli, S. Alegret, and C. Tran-Minh, "Urea potentiometric biosensor based on all-solid-state technology," Sensors and Actuators B: Chemical, vol. 16, pp. 448-452, 1993.
[26] P. D. Voegel and R. P. Baldwin, "Electrochemical detection in capillary electrophoresis," Electrophoresis, vol. 18, pp. 2267-2278, 1997.
[27] W. Vielstich, Cyclic voltammetry: Wiley Online Library, 2010.
[28] G. A. Crespo, S. Macho, and F. X. Rius, "Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers," Analytical Chemistry, vol. 80, pp. 1316-1322, 2008.
[29] M. J. Gismera, D. Hueso, J. R. Procopio, and M. T. Sevilla, "Ion-selective carbon paste electrode based on tetraethyl thiuram disulfide for copper (II) and mercury (II)," Analytica Chimica Acta, vol. 524, pp. 347-353, 2004.
[30] J. Wang, B. Tian, and E. Sahlin, "Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes," Analytical Chemistry, vol. 71, pp. 3901-3904, 1999.
[31] E. M. Richter, J. A. Fracassi da Silva, I. G. R. Gutz, C. L. do Lago, and L. Angnes, "Disposable twin gold electrodes for amperometric detection in capillary electrophoresis," Electrophoresis, vol. 25, pp. 2965-2969, 2004.
[32] R. D. Johnson, V. G. Gavalas, S. Daunert, and L. G. Bachas, "Microfluidic ion-sensing devices," Analytica Chimica Acta, vol. 613, pp. 20-30, 2008.
[33] P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Reviews Drug Discovery, vol. 5, pp. 210-218, 2006.
[34] M. J. Madou, Fundamentals of microfabrication: the science of miniaturization: CRC PressI Llc, 2002.
[35] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, vol. 74, pp. 2623-2636, 2002.
[36] H. Kido, M. Micic, D. Smith, J. Zoval, J. Norton, and M. Madou, "A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization," Colloids and Surfaces B: Biointerfaces, vol. 58, pp. 44-51, 2007.
[37] E. Dikici, L. Rowe, E. A. Moschou, A. Rothert, S. K. Deo, and S. Daunert, Luminescent proteins: applications in microfluidics and miniaturized analytical systems: Wiley VCH: Weinheim, Germany, 2006.
[38] D. C. Duffy, H. L. Gillis, J. Lin, N. F. Sheppard, and G. J. Kellogg, "Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays," Analytical Chemistry, vol. 71, pp. 4669-4678, 1999.
[39] S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius' journal of analytical chemistry, vol. 366, pp. 525-539, 2000.
[40] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418, 2006.
[41] C. S. Effenhauser, G. J. Bruin, and A. Paulus, "Integrated chip‐based capillary electrophoresis," Electrophoresis, vol. 18, pp. 2203-2213, 1997.
[42] E. A. Moschou, A. D. Nicholson, G. Jia, J. V. Zoval, M. J. Madou, L. G. Bachas, and S. Daunert, "Integration of microcolumns and microfluidic fractionators on multitasking centrifugal microfluidic platforms for the analysis of biomolecules," Analytical and Bioanalytical Chemistry, vol. 385, pp. 596-605, 2006.
[43] K. A. Erickson and P. Wilding, "Evaluation of a novel point-of-care system, the i-STAT portable clinical analyzer," Clinical Chemistry, vol. 39, pp. 283-287, 1993.
[44] E. Jacobs, E. Vadasdi, L. Sarkozi, and N. Colman, "Analytical evaluation of i-STAT Portable Clinical Analyzer and use by nonlaboratory health-care professionals," Clinical Chemistry, vol. 39, pp. 1069-1074, 1993.
[45] R. Tantra and A. Manz, "Integrated potentiometric detector for use in chip-based flow cells," Analytical Chemistry, vol. 72, pp. 2875-2878, 2000.
[46] D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X. M. Zhao, and G. M. Whitesides, "Microfabrication, microstructures and microsystems," Microsystem Technology in Chemistry and Life Science, vol. 194, pp. 1-20, 1998.
[47] A. Berduque, J. O’Brien, J. Alderman, and D. W. Arrigan, "Microfluidic chip for electrochemically-modulated liquid∣ liquid extraction of ions," Electrochemistry Communications, vol. 10, pp. 20-24, 2008.
[48] H. Hisamoto, Y. Shimizu, K. Uchiyama, M. Tokeshi, Y. Kikutani, A. Hibara, and T. Kitamori, "Chemicofunctional membrane for integrated chemical processes on a microchip," Analytical Chemistry, vol. 75, pp. 350-354, 2003.
[49] L. C. Clark and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962.
[50] M. Gronow, "Biosensors," Trends in Biochemical Sciences, vol. 9, pp. 336-340, 1984.
[51] M. Sidney. Jr. Morris, "Regulation of enzymes of the urea cycle and arginine metabolism," Annual Review of Nutrition, vol. 22, pp. 87-105, 2002.
[52] G. Palleschi, M. Mascini, E. Martinez-Fabregas, and S. Alegret, "Urea determination in human sera with an ammonium ion selective electrode made with solid inner electric contact and immobilised urease," Analytical Letters, vol. 21, pp. 1115-1129, 1988.
[53] S. I. Sasaki, T. Amano, G. Monma, T. Otsuka, N. Iwasawa, D. Citterio, H. Hisamoto, and K. Suzuki, "Comparison of two molecular design strategies for the development of an ammonium ionophore more highly selective than nonactin," Analytical Chemistry, vol. 74, pp. 4845-4848, 2002.
[54] R. Bloch, A. Shatkay, and H. Saroff, "Fabrication and evaluation of membranes as specific electrodes for calcium ions," Biophysical Journal, vol. 7, pp. 865-877, 1967.
[55] G. Moody and J. Thomas, "Selectivity ratios/coefficients of selective ion sensitive electrodes," Talanta, vol. 18, pp. 1251-1252, 1971.
[56] A. Craggs, G. Moody, and J. Thomas, "PVC matrix membrane ion-selective electrodes. Construction and laboratory experiments," Journal of Chemical Education, vol. 51, p. 541, 1974.
[57] P. Anker, E. Wieland, D. Ammann, R. E. Dohner, R. Asper, and W. Simon, "Neutral carrier based ion-selective electrode for the determination of total calcium in blood serum," Analytical Chemistry, vol. 53, pp. 1970-1974, 1981.
[58] U. Schaller, E. Bakker, U. E. Spichiger, and E. Pretsch, "Ionic additives for ion-selective electrodes based on electrically charged carriers," Analytical Chemistry, vol. 66, pp. 391-398, 1994.
[59] E. Bakker, "Determination of improved selectivity coefficients of polymer membrane ion‐selective electrodes by conditioning with a discriminated ion," Journal of The Electrochemical Society, vol. 143, pp. L83-L85, 1996.
[60] U. Oesch, D. Ammann, and W. Simon, "Ion-selective membrane electrodes for clinical use," Clinical Chemistry, vol. 32, pp. 1448-1459, 1986.
[61] D. G. Hall, "Ion-selective membrane electrodes: a general limiting treatment of interference effects," The Journal of Physical Chemistry, vol. 100, pp. 7230-7236, 1996.
[62] R. Singhal, A. Gambhir, M. Pandey, S. Annapoorni, and B. Malhotra, "Immobilization of urease on poly (N-vinyl carbazole)/stearic acid Langmuir–Blodgett films for application to urea biosensor," Biosensors and Bioelectronics, vol. 17, pp. 697-703, 2002.
[63] S. Xu, M. Wen, J. Li, S. Guo, M. Wang, Q. Du, J. Shen, Y. Zhang, and S. Jiang, "Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler," Polymer, vol. 49, pp. 4861-4870, 2008.
[64] B. Gupta, S. Singh, S. Mohan, and R. Prakash, "Urea Biosensor based on Conducting Polymer Transducers," Biosensors, InTech, Rijeka, pp. 302, 2010.
[65] M. J. Syu and Y. S. Chang, "Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix," Biosensors and Bioelectronics, vol. 24, pp. 2671-2677, 2009.
[66] S. B. Adeloju, S. J. Shaw, and G. G. Wallace, "Polypyrrole-based amperometric flow injection biosensor for urea," Analytica Chimica Acta, vol. 323, pp. 107-113, 1996.
[67] W. J. Cho and H. J. Huang, "An amperometric urea biosensor based on a polyaniline-perfluorosulfonated ionomer composite electrode," Analytical Chemistry, vol. 70, pp. 3946-3951, 1998.
[68] V. Bisht, W. Takashima, and K. Kaneto, "An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly (N-3-aminopropyl pyrrole-co-pyrrole) film," Biomaterials, vol. 26, pp. 3683-3690, 2005.
[69] C. H. Lin, G. B. Lee, Y. H. Lin, and G. L. Chang, "A fast prototyping process for fabrication of microfluidic systems on soda-lime glass," Journal of Micromechanics and Microengineering, vol. 11, pp. 726-732, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.235.196
論文開放下載的時間是 校外不公開

Your IP address is 3.15.235.196
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code