Responsive image
博碩士論文 etd-0809113-132533 詳細資訊
Title page for etd-0809113-132533
論文名稱
Title
台灣產軟珊瑚 Sarcophyton tortuosum所含之二次代謝物的研究
Secondary Metabolites from the Formosan Soft Coral Sarcophyton tortuosum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
281
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-16
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
抗發炎、細胞毒殺、天然物、蘭嶼、軟珊瑚
tortuosene, bistortuolide cyclobutane, Sarcophyton tortuosum, Orchid island, soft coral
統計
Statistics
本論文已被瀏覽 5715 次,被下載 217
The thesis/dissertation has been browsed 5715 times, has been downloaded 217 times.
中文摘要
為了尋找具有生物活性的化合物,本次研究自蘭嶼採集的軟珊瑚Sarcophyton tortuosu其中有機萃取物的化學成分,從軟珊瑚中得到的乙酸乙酯萃取物經由一連串的矽膠管住層析,其次使用高效能液相層析儀進行純化,分離純化後得到16個天然的cembrane-type代謝物 (1–16),其中包含12個新化合物,分別命名為tortuolides A–C (1–3), sarcophytonol A (4), bistortuolide cyclobutane A (5), secotortuosenes A–B (6–7)、tortuosenes A–D (8–11)和tortuosumol (12),藉由1D和2D的NMR圖譜資料 (1H, 13C, DEPT, 1H-1H COSY, HSQC, HMBC, 和NOESY)來確定這16個化合物的結構和相對立體化學,其中化合物5–11是新骨架化合物。
將得到的16個化合物進行細胞毒殺的活性評估,實驗方式以化合物對抗以下5種癌細胞株的生長來呈現,包含老鼠血癌細胞 (P-388)、人類慢性白血病細胞 (K-562)、急性淋巴性白血病細胞 (Molt-4)、人類大腸癌細胞 (HT-29)和人類肺腺癌細胞 (A-549)。實驗結果顯示化合物5對老鼠血癌細胞和人類慢性白血病細胞具有細胞毒殺活性,半抑制濃度分別為8.5和9.2 μM;此外,化合物12對急性淋巴性白血病細胞具有細胞毒殺活性半抑制濃度為21.7 μM。
另外也將這16個化合物進行抗發炎實驗的研究,其中化合物5對超氧化物和彈性蛋白酶具有抑制的活性,半抑制濃度分別為5.94 ± 1.36和6.17 ± 0.48 μM,此外化合物8對超氧化物具有抑制的活性,半抑制濃度為7.25 ± 0.81 μM。而化合物5、13和15對另一個抗發炎試驗 (一氧化氮的抑制實驗)也具有生物活性,半抑制濃度分別為36.7、37.0和47.4 μM
Abstract
In order to discover bioactive compounds, we studied the chemical constituents from the organic extracts of the soft coral Sarcophyton tortuosum, collected from Orchid island. Separation of the ethyl acetate extract of the soft coral via repeated silica gel column chromatograph, followed by HPLC purification, yielded sixteen natural cembrane-type metabolites (1–16), including twelve new compounds, namely tortuolides A–C (1–3), sarcophytonol A (4), bistortuolide cyclobutane A (5), secotortuosenes A-B (6–7), tortuosenes A-D (8–11) and tortuosumol (12). The structures and relative stereochemistry of compounds 1–16 were determined by detailed analysis of 1D and 2D NMR (1H, 13C, DEPT, 1H-1H COSY, HSQC, HMBC, and NOESY) data, and by comparison of the spectral data with the related known compounds. Among them, compounds 5–11 possess new skeletons.
The cytotoxicity of compounds 1–16 were against the growth of five cancer cell lines, including murine leukemia (P-388), human chronic myelogenous leukemia (K-562), acute lymphoblastic leukemia (Molt-4), human colon carcinoma (HT-29), and human lung adenocarcinoma (A-549) cell lines were evaluated. The results showed that compound 5 exhibited cytotoxicity toward P-388 and Molt-4 cancer cell lines with IC50 values of 8.5 and 9.2 μM, respectively, and compound 12 also exhibited cytotoxicity toward Molt-4 cancer cell line with IC50 values of 21.7 μM.
The anti-inflammatory activity of compounds 1–16 was also studied. Compound 5 inhibited the production of superoxide anion and elastase with IC50 values of 5.94 ± 1.36 and 6.17 ± 0.48 μM, respectively and compound 8 also inhibited the production of superoxide anion with IC50 values of 7.25 ± 0.81 μM. Compounds 5, 13 and 15 were shown to exert anti-inflammation by nitric oxide inhibitory assay with IC50 values of 36.7, 37.0 and 47.4 μM, respectively.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
化合物116化學結構 v
圖目錄 viii
表目錄 xv
第一章、緒論
第一節、研究背景 1
第二節、研究目的 4
第三節、文獻回顧 5
第二章、生物材料與研究方法
第一節、研究流程 68
第二節、Sarcophyton tortuosum物種的採集及分類地位 69
第三節、S. tortuosum的分離流程 70
第四節、實驗設備儀器及材料 72
第三章、化合物之結構解析
第一節、 軟珊瑚S. tortuosumm所分離出之化合物的結構解析
(一)、Tortuolide A (1)的結構解析 74
(二)、Tortuolide B (2)的結構解析 86
(三)、Tortuolide C (3)的結構解析 98
(四)、Sarcophytonol A (4)的結構解析 110
(五)、Bistortuolide cyclobutane A (5)的結構解析 122
(六)、Secotortuosene A (6)的結構解析 136
(七)、Secotortuosene B (7)的結構解析 148
(八)、Tortuosene A (8)的結構解析 160
(九)、Tortuosene B (9)的結構解析 172
(十)、Tortuosene C (10)的結構解析 184
(十一)、Tortuosene D (11)的結構解析 196
(十二)、Tortuosumol (12)的結構解析 208
(十三)、Ketoemblide (13)的結構解析 219
(十四)、Emblide (14)的結構解析 224
(十五)、Sarcrassin E (15)的結構解析 229
(十六)、Flexibilisquinone (16)的結構解析 234
第二節、化合物物理性質 239
第四章、生物活性試驗方法
第一節、細胞毒殺檢測原理及方法 242
第二節、抗發炎活性試驗原理及方法 244
第五章、生物活性試驗結果
第一節、 細胞毒殺活性結果
第二節、 抗發炎活性試驗結果 247
248
第六章、結論 250
第七章、參考文獻 254










圖 次
頁 次
Figure 1-1. 核苷類化合物spongothymidine、spongouridine以及Ara-C的結構圖。 2
Figure 1-2. pseudopterosin A的結構圖。 3
Figure 1-3. eleutherobin的結構圖。 3
Figure 2-1. 肉質軟珊瑚S. tortuosum (a) 採集前水下生態照
(b) 採集上岸的樣品 69
Figure 2-2. 肉質軟珊瑚軟珊瑚S. tortuosum的分離流程 71
Figure 3-1-1. Key 1H–1H COSY and HMBC correlations for 1 76
Figure 3-1-2. Key NOESY correlations for 1 78
Figure 3-1-3. IR spectrum of 1 80
Figure 3-1-4. EIMS spectrum of 1 80
Figure 3-1-5. HREIMS spectrum of 1 81
Figure 3-1-6. 1H NMR spectrum of 1 in CDCl3 81
Figure 3-1-7. 1H-NMR (3.2~6.7 ppm) spectrum of 1 82
Figure 3-1-8. 13C NMR spectrum of 1 in CDCl3 82
Figure 3-1-9. DEPT spectra of 1 in CDCl3 83
Figure 3-1-10. HSQC spectrum of 1 in CDCl3 83
Figure 3-1-11. 1H–1H COSY spectrum of 1 in CDCl3 84
Figure 3-1-12. HMBC spectrum of 1 in CDCl3 84
Figure 3-1-13. NOESY spectrum of 1 in CDCl3 85
Figure 3-2-1. Key 1H–1H COSY and HMBC correlations for 2 88
Figure 3-2-2. Key NOESY correlations for 2 90
Figure 3-2-3. IR spectrum of 2 92
Figure 3-2-4. EIMS spectrum of 2 92
Figure 3-2-5. HREIMS spectrum of 2 93
Figure 3-2-6. 1H NMR spectrum of 2 in CDCl3 93
Figure 3-2-7. 1H-NMR (2.5~6.5 ppm) spectrum of 2 94
Figure 3-2-8. 13C NMR spectrum of 2 in CDCl3 94
Figure 3-2-9. DEPT spectrum of 2 in CDCl3 95
Figure 3-2-10. HSQC spectrum of 2 in CDCl3 95
Figure 3-2-11. COSY spectrum of 2 in CDCl3 96
Figure 3-2-12. HMBC spectrum of 2 in CDCl3 96
Figure 3-2-13. NOESY spectrum of 2 in CDCl3 97
Figure 3-3-1. Key 1H–1H COSY and HMBC correlations for 3 100
Figure 3-3-2. Key NOESY correlations for 3 102
Figure 3-3-3. IR spectrum of 3 104
Figure 3-3-4. EIMS spectrum of 3 104
Figure 3-3-5. HREIMS spectrum of 3 105
Figure 3-3-6. 1H NMR spectrum of 3 in CDCl3 105
Figure 3-3-7. 1H-NMR (5.1~7.7 ppm) spectrum of 3 106
Figure 3-3-8. 13C NMR spectrum of 3 in CDCl3 106
Figure 3-3-9. DEPT spectra of 3 107
Figure 3-3-10. HSQC spectrum of 3 in CDCl3 107
Figure 3-3-11. 1H–1H COSY spectrum of 3 in CDCl3 108
Figure 3-3-12. HMBC spectrum of 3 in CDCl3 108
Figure 3-3-13. NOESY spectrum of 3 in CDCl3 109
Figure 3-4-1. Key 1H–1H COSY and HMBC correlations for 4 112
Figure 3-4-2. Key NOESY correlations for 4 114
Figure 3-4-3. IR spectrum of 4 116
Figure 3-4-4. EIMS spectrum of 4 116
Figure 3-4-5. HREIMS spectrum of 4 117
Figure 3-4-6. 1H NMR spectrum of 4 in CDCl3 117
Figure 3-4-7. 1H-NMR (3.5~7.0 ppm) spectrum of 4 118
Figure 3-4-8. 13C NMR spectrum of 4 in CDCl3 118
Figure 3-4-9. DEPT spectrum of 4 in CDCl3 119
Figure 3-4-10. HSQC spectrum of 4 in CDCl3 119
Figure 3-4-11. 1H–1H COSY spectrum of 4 in CDCl3 120
Figure 3-4-12. HMBC spectrum of 4 in CDCl3 120
Figure 3-4-13. NOESY spectrum of 4 in CDCl3 121
Figure 3-5-1. Key 1H–1H COSY and HMBC correlations for 5 125
Figure 3-5-2. Key NOESY correlations for 5 127
Figure 3-5-3. IR spectrum of 5 130
Figure 3-5-4. EIMS spectrum of 5 130
Figure 3-5-5. HREIMS spectrum of 5 131
Figure 3-5-6. 1H NMR spectrum of 5 in CDCl3 131
Figure 3-5-7. 1H-NMR (2.9~6.4 ppm) spectrum of 5 132
Figure 3-5-8. 13C NMR spectrum of 5 in CDCl3 132
Figure 3-5-9. DEPT spectra of 5 in CDCl3 133
Figure 3-5-10. HSQC spectrum of 5 in CDCl3 133
Figure 3-5-11. 1H–1H COSY spectrum of 5 in CDCl3 134
Figure 3-5-12. HMBC spectrum of 5 in CDCl3 134
Figure 3-5-13. NOESY spectrum of 5 in CDCl3 135
Figure 3-6-1. Key 1H–1H COSY and HMBC correlations for 6 138
Figure 3-6-2. Key NOESY correlations for 6 140
Figure 3-6-3. IR spectrum of 6 142
Figure 3-6-4. EIMS spectrum of 6 142
Figure 3-6-5. HREIMS spectrum of 6 143
Figure 3-6-6. 1H NMR spectrum of 6 in CDCl3 143
Figure 3-6-7. 1H-NMR (4.7~6.8 ppm) spectrum of 6 144
Figure 3-6-8. 13C NMR spectrum of 6 in CDCl3 144
Figure 3-6-9. DEPT spectra of 6 in CDCl3 145
Figure 3-6-10. HSQC spectrum of 6 in CDCl3 145
Figure 3-6-11. 1H–1H COSY spectrum of 6 in CDCl3 146
Figure 3-6-12. HMBC spectrum of 6 in CDCl3 146
Figure 3-6-13. NOESY spectrum of 6 in CDCl3 147
Figure 3-7-1. Key 1H–1H COSY and HMBC correlations for 7 150
Figure 3-7-2. Key NOESY correlations for 7 152
Figure 3-7-3. IR spectrum of 7 154
Figure 3-7-4. EIMS spectrum of 7 154
Figure 3-7-5. HREIMS spectrum of 7 155
Figure 3-7-6. 1H NMR spectrum of 6 in CDCl3 155
Figure 3-7-7. 1H-NMR (4.7~6.8 ppm) spectrum of 7 156
Figure 3-7-8. 13C NMR spectrum of 7 in CDCl3 156
Figure 3-7-9. DEPT spectra of 7 in CDCl3 157
Figure 3-7-10. HSQC spectrum of 7 in CDCl3 157
Figure 3-7-11. 1H–1H COSY spectrum of 7 in CDCl3 158
Figure 3-7-12. HMBC spectrum of 7 in CDCl3 158
Figure 3-7-13. NOESY spectrum of 7 in CDCl3 159
Figure 3-8-1. Key 1H–1H COSY and HMBC correlations for 8 162
Figure 3-8-2. Key NOESY correlations for 8 164
Figure 3-8-3. IR spectrum of 8 166
Figure 3-8-4. EIMS spectrum of 8 166
Figure 3-8-5. HREIMS spectrum of 8 167
Figure 3-8-6. 1H NMR spectrum of 8 in CDCl3 167
Figure 3-8-7. 1H-NMR (2.9~6.7 ppm) spectrum of 8 168
Figure 3-8-8. 13C NMR spectrum of 8 in CDCl3 168
Figure 3-8-9. DEPT spectra of 8 in CDCl3 169
Figure 3-8-10. HSQC spectrum of 8 in CDCl3 169
Figure 3-8-11. 1H–1H COSY spectrum of 8 in CDCl3 170
Figure 3-8-12. HMBC spectrum of 8 in CDCl3 170
Figure 3-8-13. NOESY spectrum of 8 in CDCl3 171
Figure 3-8-14. Experimental CD spectrum of 8 compared with the M062X/6-31+G* spectrum calculated for the (1R,2R,7S,8R) enantiomer. 171
Figure 3-9-1. Key 1H–1H COSY and HMBC correlations for 9 174
Figure 3-9-2. Key NOESY correlations for 9 176
Figure 3-9-3. IR spectrum of 9 178
Figure 3-9-4. EIMS spectrum of 9 178
Figure 3-9-5. HREIMS spectrum of 9 179
Figure 3-9-6. 1H NMR spectrum of 9 in CDCl3 179
Figure 3-9-7. 1H-NMR (1.9~3.5 ppm) spectrum of 9 180
Figure 3-9-8. 13C NMR spectrum of 9 in CDCl3 180
Figure 3-9-9. DEPT spectra of 9 in CDCl3 181
Figure 3-9-10. HSQC spectrum of 9 in CDCl3 181
Figure 3-9-11. 1H–1H COSY spectrum of 9 in CDCl3 182
Figure 3-9-11. HMBC spectrum of 9 in CDCl3 182
Figure 3-9-13. NOESY spectrum of 9 in CDCl3 183
Figure 3-10-1. Key 1H–1H COSY and HMBC correlations for 10 186
Figure 3-10-2. Key NOESY correlations for 10 188
Figure 3-10-3. IR spectrum of 10 190
Figure 3-10-4. EIMS spectrum of 10 190
Figure 3-10-5. HREIMS spectrum of 10 191
Figure 3-10-6. 1H NMR spectrum of 10 in CDCl3 191
Figure 3-10-7. 1H NMR spectrum of 10 in CDCl3 192
Figure 3-10-8. 13C NMR spectrum of 10in CDCl3 192
Figure 3-10-9. DEPT spectra of 10 in CDCl3 193
Figure 3-10-10. HSQC spectrum of 10 in CDCl3 193
Figure 3-10-11. 1H–1H COSY spectrum of 10 in CDCl3 194
Figure 3-10-12. HMBC spectrum of 10 in CDCl3 194
Figure 3-10-13. NOESY spectrum of 10 in CDCl3 195
Figure 3-11-1. Key 1H–1H COSY and HMBC correlations for 11 198
Figure 3-11-2. Key NOESY correlations for 11 200
Figure 3-11-3. IR spectrum of 11 202
Figure 3-11-4. EIMS spectrum of 11 202
Figure 3-11-5. HREIMS spectrum of 11 203
Figure 3-11-6. 1H NMR spectrum of 11 in CDCl3 203
Figure 3-11-7. 1H-NMR (4.7~6.8 ppm) spectrum of 11 204
Figure 3-11-8. 13C NMR spectrum of 11 in CDCl3 204
Figure 3-11-9. DEPT spectra of 11 in CDCl3 205
Figure 3-11-10. HSQC spectrum of 11 in CDCl3 205
Figure 3-11-11. 1H–1H COSY spectrum of 11 in CDCl3 206
Figure 3-11-12. HMBC spectrum of 11 in CDCl3 206
Figure 3-11-13. NOESY spectrum of 11 in CDCl3 207
Figure 3-12-1. Key 1H–1H COSY and HMBC correlations for 12 210
Figure 3-12-2. Key NOESY correlations for 12 211
Figure 3-12-3. IR spectrum of 12 213
Figure 3-12-4. EIMS spectrum of 12 213
Figure 3-12-5. HREIMS spectrum of 12 214
Figure 3-12-6. 1H NMR spectrum of 12 in CDCl3 214
Figure 3-12-7. 1H-NMR (4.7~6.8 ppm) spectrum of 12 215
Figure 3-12-8. 13C NMR spectrum of 12 in CDCl3 215
Figure 3-12-9. DEPT spectra of 12 in CDCl3 216
Figure 3-12-10. HSQC spectrum of 12 in CDCl3 216
Figure 3-12-11. 1H–1H COSY spectrum of 12 in CDCl3 217
Figure 3-12-12. HMBC spectrum of 12 in CDCl3 217
Figure 3-12-13. NOESY spectrum of 12 in CDCl3 218
Figure 3-13-1. ESIMS spectrum of 13 222
Figure 3-13-2. 13C NMR spectrum of 13 in CDCl3 222
Figure 3-13-3. 1H NMR spectrum of 13 in CDCl3 223
Figure 3-14-1. ESIMS spectrum of 14 227
Figure 3-14-2. 13C NMR spectrum of 14 in CDCl3 227
Figure 3-14-3. 1H NMR spectrum of 14 in CDCl3 228
Figure 3-15-1. ESIMS spectrum of 15 232
Figure 3-15-2. 13C NMR spectrum of 15 in CDCl3 232
Figure 3-15-3. 1H NMR spectrum of 15 in CDCl3 233
Figure 3-16-1. ESIMS spectrum of 16 236
Figure 3-16-2. 13C NMR spectrum of 16 in CDCl3 236
Figure 3-16-3. 1H NMR spectrum of 16 in CDCl3 237
Figure 4-1. Alamar Blue reduction 242
Figure 5-2. Results of nitric oxide inhibitory assay. 249
表 次 頁 次
Table 1-1. 軟珊瑚Sarcophyton tortuosum所含天然物及其生物活性文獻回顧 5
Table 1-2. Sarcophyton屬所含cembrane類化合物及其生物活性文獻回顧 10
Table 3-1-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 1 79
Table 3-2-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 2 91
Table 3-3-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 3 103
Table 3-4-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 4 115
Table 3-5-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 5 128
Table 3-6-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 6 141
Table 3-7-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 7 153
Table 3-8-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 8 165
Table 3-9-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 9 177
Table 3-10-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 10 189
Table 3-11-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 11 201
Table 3-12-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 12 212
Table 3-13-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 13 221
Table 3-14-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 14 226
Table 3-15-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 15 231
Table 3-16-1. The 1H, 13C NMR Data,1H–1H COSY, and HMBC for 16 236
Table 5-1. Cytotoxicity (IC50 μg/mL) of compounds 1–16 247
Table 5-2. Effects of pure compounds on superoxide anion generation
and elastase release in FMLP/CB-induced human neutrophils. 248
Table 5-3. Figure 5-2之數據整理 249
參考文獻 References
1. 戴昌鳳,墾丁國家公園–珊瑚之美,墾丁國家公園管理處員工消費福利社出版,屏東,中華民國,1989,9–16。
2. G. J. Bakus; Science 1981, 211, 497–499.
3. 姜鳳吾、張玉順,中國海洋藥物辭典,海洋出版社,1993。
4. 江昆達、林全信,豐富的海洋資源,台灣書店,1998,117–126。
5. Marty, A. T. “The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines.” JAMA. 1999, 281, 1852–1853.
6. Kijjoa, A.; Sawangwong, P. “Drugs and cosmetics from the sea.” Mar. Durgs 2004, 2, 73–82.
7. Fenical, W. “Marine soft coral of the genus Pseudopterogorgia : a resource for novel anti-inflammatory diterpenoids.” J. Nat. Prod. 1987, 50, 1001–1008.
8. Long, B. H.; Carboni, J. M.; Wasserman, A. J.; Cornell, L. A.; Casazza, A. M.; Jensen, P. R.; Lindel, T.; Fenical, W. Fairchild, C. R. “Eleutherobin, a Novel Cytotoxic Agent That Induces Tubulin.” Cancer Res 1998, 58, 1111–1115.
9. Wallace, M. S.; Charapata, S. G.; Fisher, R. “Intrathecal ziconotide in the treatment of chronic non-malignant pain: a randomized double blind placebo-controlled clinical trial.” Neuromodulation 2006, 9, 75–86.
10. Jingyu, S.; Kanghou, L. Tangsheng, P.; He, C.-H.; Clardy, J. “ The structure of methyl isosartortuoate, a novel tetracyclic tetraterpenoid from the soft coral Sarcophyton tortuosum.” J. Am. Chem. Soc. 1986, 108, 177–178.
11. Leone, P. A.; Bowden, B. F.; Carroll, A. R.; Coll, J. C.; Meehan, G. V. “Studies of Australian soft corals. XLIX. A new biscembranoid and its probable biosynthetic precursors from the soft coral Sarcophyton tortuosum.” J. Nat. Prod. 1993, 56, 521–526.
12. Zeng, L.-M.; Lan, W.-J.; Su, J.-Y.; Zhang, G.-W.; Feng, X.-L.; Liang, Y.-J.; Yang, X.-P. “Two New Cytotoxic Tetracyclic Tetraterpenoids from the Soft Coral Sarcophyton tortuosum.” J. Nat. Prod. 2004, 67, 1915–1918.
13. Jia, R.; Guo, Y.-W.; Chen, P.; Yang, Y.-M.; Mollo, E.; Gavagnin, M.; Cimino, G. “Biscembranoids and their probable biogenetic precursor from the Hainan soft coral Sarcophyton tortuosum.” J. Nat. Prod. 2007, 70, 1158–1166.
14. Lan, W.-J.; Li, H.-J.; Yan, S.-J.; Su, J.-Y.; Zeng, L.-M. “New tetraterpenoid from the soft coral Sarcophyton tortuosum.” J. Asian Nat. Prod. Res. 2007, 9, 267–271.
15. Jia, R.; Guo, Y.-W.; Mollo, E.; Gavagnin, M.; Cimino, G. “Further New Bis-cembranoids from the Hainan Soft Coral Sarcophyton tortuosum.” Helv. Chim. Acta. 2008, 91, 2069–2074.
16. Bernstein, J.; Shmueli, U.; Zadock, E.; Kashman, Y.; Neeman, I. “Sarcophine, a new epoxy cembranolide from marine origin.” Tetrahedron 1974, 30, 2817–2824.
17. Kashman, Y.; Zadock, E.; Neeman, I. “Some new cembrane derivatives of marine origin.” Tetrahedron 1974, 30, 3615–3620.
18. Tursch, B. “Some recent developments in the chemistry of Alcyonaceans” Pure& Appl.Chem. 1976, 48, 1–6.
19. Coll, J. C.; Hawes, G. B.; Liyanage, N.; Oberhansli, W.; Wells, R. J. “Studies of Australian soft corals. I* A new cembranoid diterpene from a Sarcophyton species.” Aust. J. Chem. 1977, 30, 1305–1309.
20. Bowden, B. F.; Coll, J. C.; Hicks, W.; Kazlauskas, R.; Mitchell, S. J. “Studies of Australian soft corals. X* The isolation of Epoxyisoneocembrene-A from Sinularia grayi and Isoneocembrene-A from Sarcophyton ehrenbergi.” Aust. J. Chem. 1978, 31, 2027–2012.
21. Albericci, M.; Braekman, J. C.; Daloze, D.; Tursch, B. Bull. Soc. Chim. Belg. 1978, 87, 487–492.
22. Bowden, B. F.; Coll, J. C.; Mitchell, S. J.; Stokie, G. J. “Studies of Australian soft corals. XI* Two new cembranoid diterpenes from a Sarcophyton species.” Aust. J. Chem. 1979, 32, 653–659.
23. Kobayashi, M.; Nakagawa, T.; Mitsuhashi, H. “Marine terpenes and terpenoids. I. Structures of four cembrane-type diterpenes; Sarcophytol-A, Sarcophytol-A acetate Sarcophytol-B, and Sarcophytonin-A, from the soft coral, Sarcophyton glaucum.” Chem. Pharm. Bull. 1979, 27, 2382–2387.
24. Toth, A. J.; Burreson, J. B.; Scheuer, J. P. “Emblide, a new polyfunstional cembranolide from the soft coral Sarcophyton glaucum.” Tetrahedron, 1980, 36, 1307–1309.
25. Bowden, B. F.; Coll, J. C.; Mitchell, S. J. “Studies of Australian soft corals. XVIII* Further cembranoid diterpenes from soft corals of the genus Sarcophyton.” Aust. J. Chem. 1980, 33, 879–884.
26. Carmely, S.; Groweiss, A.; Kashman, Y. “Decaryiol, a new cembrane diterpene from the marine soft coral Sarcophyton decaryi.” J. Org. Chem. 1981, 46, 4279–4284.
27. Nakagawa, T.; Kobayashi, M.; Hayashi, K.; Mitsuhashi, H. “Marine terpenes and terpenoids. II. Structures of three cembrane-type diterpenes; Sarcophytol-C, Sarcophytol-D, and Sarcophytol-E, from the soft coral, Sarcophyton glaucum Q. et. G.” Chem. Pharm. Bull. 1981, 29, 82–87.
28. Bowden, B. F.; Coll, J. C.; Wells, R. H. “Studies of Australian soft corals. XXVII* Two novel diterpenes from Sarcophyton glaucum.” Aust. J. Chem. 1982, 35, 621–627.
29. Kazlauskas, R.; Baird-Lambert, J. A.; Murphy, P. T., Wells, R. J. “Two new cembrane from a soft coral (Sarcophyton species).” Aust. J. Chem. 1982, 35, 61–68.
30. Uchio, Y.; Nitta. M.; Nakayama, M.; Iwagawa, T.; Hase, T. “Ketoemblide and Sarcophytolide, two new cembranolides with ε-lactone function from the soft coral Sarcophyton elegans.” Chem. Lett. 1983, 613–616.
31. Suleimenova, A. M.; Kalinovskii, A. I.; Raldugin, V. A.; Shevtsov, S. A.; Bagryanskaya, I. Yu.; Gatilov, V. Yu; Kuznetsova, T. A; Elyakov, G. B. “New derivatives of ()-Neocembrene from the soft coral Sarcophyton trocheliophorum.” Chem. Nat. Comp. 1988, 24, 453458.
32. Kuznetsova, T. A.; Popov, A. M.; Agafonova, I. G.; Suleimenova, A. M.; Elyakov, G. B. “Physiological activity of diterpenoids from the soft coral Sarcophyton trocheliophorum.” Chem. Nat. Comp. 1989, 25, 122124.
33. Kobayashi, M.; Osabe, K. “Marine terpenes and terpenoids. VII. Minor cembranoid derivatives, structurally related to the potent anti-tumor-promoter Sarcophytol A, from the soft coral Sarcophyton glaucum.” Chem. Pharm. Bull. 1989, 37, 631–636.
34. Kobayashi, M.; Osabe, K. “Marine terpenes and terpenoids. VIII. Transannular cyclization of 3,4-Epoxy-1,7,11-cembratriene systems.” Chem. Pharm. Bull. 1989, 37, 1192–1196.
35. Kobayashi, M.; Iesaka, T.; Nakano, E. “Marine terpenes and terpenoids. IX. Structures of six new cembranoids, Sarcophytols F, K, P, Q, R and S, from the soft coral Sarcophyton glaucum.” Chem. Pharm. Bull. 1989, 37, 2053–2057.
36. Kobayashi, M.; Nakano, E. “Sterochemical course of the transannular cyclization, in chloroform, of epoxycembranoids derived from the geometrical isomers of (14S)-14-Hydroxy-1,3,7,11-cembratetraenes.” J. Org. Chem. 1990, 55, 1947–1951.
37. Kobayashi, M.; Hirase, T. “Marine terpenes and terpenoids. XI. Structures of new dihydrofuranocembranoids isolated from a Sarcophyton sp. soft coral of Okinawa.” Chem. Pharm. Bull. 1990, 38, 2442–2445.
38. Kusumi, T.; Igari, M.; Ishitsuka, M. O.; Ichikawa, A.; Itezono, Y.; Nakayama, N.; Kakisawa, H. “A novel chlorinated bis cembranoid from the marine soft coral Sarcophyton glaucum.” J. Org. Chem. 1990, 55, 6286–6289.
39. Ishitsuka, M.O.; Kusumi, T.; Kakisawa, H. “Isolation of a monomeric counterpart of the marine biscembranoids, a biogenic diels-alder precursor.” Tetrahedron Lett. 1991, 32, 2917–2918.
40. Anthoni, U.; Bock, K.; Christophersen, C.; Duus, J. Ø.; Kjær, E.B.; Nielsen, P. H. “Structure of a novel antifouling epoxy cembrenoid diterpene from a Sarcophyton sp..” Tetrahydron Lett. 1991, 32, 2825–2826.
41. Greenland, G. J.; Bowden, B. F. “Cembranoid diterpenes related to Sarcophytol A from the soft coral Sarcophyton trocheliophorum (Alcyonacea) .” Aust. J. Chem. 1994, 47, 2013–2021.
42. Kobayashi, M.; Hirase, T. “Marine terpenes and terpenoids. XIII. isolation of a new dihydrofuranocembranoid, sarcophytonin E, from the Sarcophyton sp. soft coral of Okinawa.” Chem. Pharm. Bull, 1991, 39, 3055–3056.
43. Iwagawa, T.; Nakamura, S.; Masuda, T.; Okamura, H.; Nakatani, M.; Shiro, M. “Irregular cembranoids containing a 13-membered carbocyclic skeleton from a soft coral, Sarcophyton species.” Tetrahedron Lett. 1995, 51, 5291–5298.
44. Greenland, G. J.; Bowden, B. F. “Cembranoid diterpenes related to Sarcophytol A from the soft coral Sarcophyton trocheliophorum (Alcyonacea).” Aust. J. Chem. 1994, 47, 2013–2021.
45. Miyaoka, H.; Taira, S.; Mitome, H.; Iguchi, K.; Matsumoto, K.; Yokoo, C.; Yamada, Y. “Two new cembrane-type diterpenoids from Okinawan soft coral of genus, Sarcophyton sp..” Chem. Lett. 1996, 3, 239–240.
46. Iwagawa, T.; Nakamura, S.; Okamura, H.; Nakatani, M.. “Ichthyotoxic cembranoids from the soft coral, Sarcophyton sp..” Bull. Chem. Soc. 1996, 69, 3543–3549.
47. Duh, C.-Y.; Hou, R.-S. “Cytotoxic cembranoids from the soft corals Sinularia gibberosa and Sarcophyton trocheliophorum.” J. Nat. Prod. 1996, 59, 595–598.
48. König, G. M.; Wright, A. D. “New cembranoid diterpenes from the soft coral Sarcophyton ehrenbergi.” J. Nat. Prod. 1998, 61, 494–496.
49. Badria, F. A.; Guirguis, A. N.; Perovic, S.; Steffen, R.; Müller, W. E. G.; Schröder, H. C. “Sarcophytolide: a new neuroprotective compound from the soft coral Sarcophyton glaucum.” Toxicology 1998, 131, 133–143.
50. Iwagawa, T.; Nakashima, R.; Takayama, K.; Okamura, H.; Nakatani, M.; Doe, M.; Shibata, K. “New cembranes from the soft coral Sarcophyton species.” J. Nat. Prod. 1999, 62, 1046–1049.
51. Duh, C.-Y.; Wang, S.-K.; Chung, S.-G.; Chou, G.-C.; Dai, C.-F. “Cytotoxic cembrenolides and steroids from the Formosan soft coral Sarcophyton crassocaule.” J. Nat. Prod. 2000, 63, 1634–1637.
52. Dong, H.; Gou, Y.-L.; Kini, R. M.; Xu, H.-X.; Chen, S.-X.; Teo, L.-M.; But, P.-H. “A new cytotoxic polyhydroxysterol from soft coral Sarcophyton trocheliophorum.” Chem. Pharm. Bull. 2000, 48, 1087–1089.
53. Pham, N. B.; Butler, M. S.; Quinn, R. J. “Naturally occurring cembranes from an Australian Sarcophyton species.” J. Nat. Prod. 2002, 65, 1147–1150.
54. Longeon, A.; Bourguet-Kondracki, M.-L.; Guyot, M. “Two new cembrane diterpenoids from a Madagascan soft coral of the genus Sarcophyton.” Tetrahedron Lett. 2002, 43, 5937–5939.
55. Gross, H.; Kehraus, S.; Nett, M.; König, G. M.; Beil, W.; Wright, A. D. “New cytotoxic cembrane based diterpenes from the soft corals Sarcophyton cherbonnieri and Nephthea sp..” Org. Biomol. Chem. 2003, 1, 944–949.
56. Feller, M.; Rudi, A.; Berer, N.; Goldberg, I.; Stein, Z.; Benayahu, Y.; Schleyer, M.; Kashman, K. ” Isoprenoids of the soft coral Sarcophyton glaucum: nyalolide, a new biscembranoid, and Other terpenoids.” J. Nat. Prod. 2004, 67, 1303–1308.
57. Gross, H.; Wright, A. D.; Beil, W.; König, G. M. “Two new bicyclic cembranolides from a new Sarcophyton species and determination of the absolute configuration of Sarcoglaucol-16-one.” Org. Biomol. Chem. 2004, 2, 1133–1138.
58. Jia, R.; Guo, Y.-W.; Mollo, E.; Cimino, G. “Sarcophytonolides AD, four new cembranolides from the Hainan soft coral Sarcophyton sp..” Helv. Chim. Acta. 2005, 88, 1028–1033.
59. Jia, R.; Guo, Y.-W.; Mollo, E.; Gavagnin, M.; Cimino, G. “Sarcophytonolides EH, cembranolides from the Hainan soft corals Sarcophyton latum.” J. Nat. Prod. 2006, 69, 819–822.
60. Zhang, C.; Li, J.; Su, J.; Liang, Y.-J.; Yang, X.-P; Zheng, K.-C; Zeng, L.-M. “Cytotoxic diterpenoids from the soft coral Sarcophyton crassocaule.” J. Nat. Prod. 2006, 69, 1476–1480.
61. Huang, H.-C.; Ahmed, A. F.; Su J.-H.; Chao, C.-H.; Wu, Y-C.; Chiang, M.-Y.; Sheu, J.-H. “Crassocolides AF, cembranoids with a trans-fused lactone from the soft coral Sarcophyton crassocaule.” J. Nat. Prod. 2006, 69, 1554–1559.
62. Sawant, S. S.; Youssef, D. T. A.; Reiland, J.; Ferniz, M.; Marchetti, D,; Sayed, K. A. E. “ Biocatalytic and Antimetastatic Studies of the Marine Cembranoids Sarcophine and 2-epi-16-Deoxysarcophine.” J. Nat. Prod. 2006. 69, 1010–1013.
63. Iwagawa, T.; Hashimoto, K.; Okamura, H.; Kurawaki, J.-I.; Nakatani, M.; Hou, D.-X.; Fujii, M.; Doe, M.;Morimoto, Y.; Takayama, K. “Biscembranes from the soft coral Sarcophyton glaucum.” J. Nat. Prod. 2006, 69, 1130–1133.
64. Yan, X.-H.; Li, Z.-Y.; Guo Y.-W. “Further new cembranoid diterpenes from the Hainan soft coral Sarcophyton latum.” Helv. Chim. Acta. 2007, 90, 1574–1580.
65. Yan, X.-H.; Gavagnin, M.; Ciminob, G.; Guoa, Y.-W. “Two new biscembranes with unprecedented carbon skeleton and their probable biogenetic precursor from the Hainan soft coral Sarcophyton latum.” Tetrahedron Lett. 2007, 48, 5313–5316.
66. Bishara, A.; Rudi, A.; Benayahu, Y.; Kashman, Y. “Three biscembranoids and their monomeric counterpart cembranoid, a biogenetic diels-alder precursor, from the soft coral Sarcophyton elegans.” J. Nat. Prod. 2007, 70, 1951–1954.

67. Ofwegen, L. P. van, S. D. Cairns and J. van der Land “Catalogue of life: 2006 Annual Checklist.” 2006.
68. Cheng, Y.-B.; Shen, Y.-C.; Kuo, Y.-H.; Khalil A.-T. “Cembrane diterpenoids from the Taiwanese soft coral Sarcophyton stolidotum.” J. Nat. Prod. 2008, 71, 1141–1145.
69. Bensemhoun, J.; Rudi, A.; Bombarda, I.; Gaydou ,E. M.; Kashman, Y.; Aknin, M. “Flexusines A and B and epimukulol from the soft coral Sarcophyton flexuosum.” J. Nat. Prod. 2008, 71, 1262–1264.
70. Yao, L.-G.; Liu, H.-L.; Guo, Y.-W.; Mollo, E. “New Cembranoids from the Hainan Soft Coral Sarcophyton glaucum.” Helv. Chim. Acta. 2009, 92, 1085–1091.
71. Iwagawa, T.; Hashimoto, K.; Yokogawa, Y.; Okamura, H.; Nakatani, M.; Doe, M.; Morimoto, Y.; Takemura, K. “Cytotoxic biscembranes from the soft coral Sarcophyton glaucum.” J. Nat. Prod. 2009, 72, 946–949.
72. Huang, H.-C.; Chao, C.-H.; Kuo, Y.-H.; Sheu, J.-H. “Crassocolides G–M, cembranoids from the formosan soft coral Sarcophyton crassocaule.” Chem. & Biodiv. 2009, 6, 1232–1242.
73. Cheng, S.-Y.; Wang, S.-K.; Chiou, S.-F.; Hsu, C.-H.; Dai, C.-F.; Chiang, M. Y.; Duh, C.-Y. “Cembranoids from the octocoral Sarcophyton ehrenbergi.” J. Nat. Prod. 2010, 73, 197–203.
74. Lin, W.-Y.; Su, J.-H.; Lua, Y.; Wen, Z.-H.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. “Cytotoxic and anti-inflammatory cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule.” Bioorg. Med. Chem. 2010, 18, 1936–1941.
75. Su, J.-H.; Lu, Y.; Lin, W.-Y.; Wang, W.-H.; Sung, P.-J.; Sheu, J.-H. “A cembranoid, trocheliophorol, from the cultured soft coral Sarcophyton trocheliophorum.” Chem. Lett. 2010, 39, 172–173.
76. Kapojos, M. M.; Lee, J.-S.; Oda, T.; Nakazawa, T.; Takahashi, O.; Ukai, K.; Mangindaan, R. E.P.; Rotinsulu, H.; Wewengkang, D. S.; Tsukamoto, S.; Kobayashi, H.; Namikoshi, M. “Two unprecedented cembrene-type terpenes from an indonesiansoft coral sarcophyton sp..” Tetrahedron 2010, 66, 641–645.
77. Bonnard, I.; Jhaumeer-Laulloo, S. B.; Bontemps, N.; Banaigs, B.; Aknin, M. “New lobane and cembrane diterpenes from two comorian soft corals.” Mar. Drugs 2010, 8, 359–372.
78. Grkovic, T.; Whitson, E. L.; Rabe, D. C.; Gardella, R. S.; Bottaro, D. P.; Marston Linehan, W.; McMahon, J. B.; Gustafson, K. R.; McKee, T. C. “Identification and evaluation of soft coral diterpenes as inhibitors of HIF-2a induced gene expression.” Bioorg. Med. Chem. Lett. 2011, 21, 2113–2115.
79. Lin, W.-Y.; Lu, Y.; Su, J.-H.; Wen, Z.-H.; Dai, C.-F.; Kuo, Y.-H.; Sheu, J.-H. “Bioactive cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule.” Mar. Drugs 2011, 9, 994–1006.
80. Wang, G.-H; Huang, H.-C.; Su, J.-H.; Huang, C.-Y.; Hsu, C.-H.; Kuo, Y.-H.; Sheu, J.-H. “Crassocolides N–P, three cembranoids from the Formosan soft coral Sarcophyton crassocaule.” Bioorg. Med. Chem. Lett. 2011, 21, 7201–7204.
81. Hegazy, M.-E. F. Gamal Eldeen, A. M.; Shahat, A. A.; Abdel-Latif, F. F.; Mohamed, T. A.; Whittlesey B. R.; Paré, P. W. “Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum.” Mar. Drugs 2012, 10, 209–222.
82. Yao, L.-G.; Zhang, H.-Y.; Liang, L.-F.; Guo, X.-J.; Mao, S.-C.; Guo,Y.-W. “YalongenesA and B, two new cembranoids with cytoprotective effects fromthe Hainan soft coral Sarcophyton trocheliophorum Marenzeller.” Helv. Chim. Acta. 2012, 95, 235–239.
83. Lin, W.-Y.; Lu, Y.; Chen, B.-W.; Huang, C.-Y.; Su, J.-H.; Wen, Z.-H.; Dai, C.-F.; Kuo, Y.-H.; Sheu ,J.-H. “Sarcocrassocolides M–O, bioactive cembranoids from the Dongsha Atoll soft coral Sarcophyton crassocaule.” Mar. Drugs 2012, 10, 617–626.
84. Wang, S.-K.; Hsieh, M.-K.; Duh, C.-Y. “Three new cembranoids from the Taiwanese soft coral Sarcophyton ehrenbergi.” Mar. Drugs 2012, 10, 1433–1444.
85. El-Ezz, R. F. A.; Ahmed, S. A.; Radwan, M. M.; Ayoub, N. A.; Afifi, M. S.; Ross, S. A.; Szymanski, P. T.; Fahmy, H.; Khalifa, S. I. “Bioactive cembranoids from the Red Sea soft coral Sarcophyton glaucum.” Tetrahedron Lett. 2013, 54, 989–992.
86. O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. ”Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity.” Eur. J. Biochem. 2000, 267, 5421–5426.
87. Hwang, T.-L.; Leu, Y.-L.; Kao, S.-H.; Tang, M.-C.; Chang, H.-L. “Viscolin,a new chalcone from Viscum coloratum, inhibits human neutrophilsuperoxide anion and elastase release via a cAMP-dependent pathway.” Free Radical Bio. Med. 2006, 41, 1433–1441.
88. Chen, B.-W.; Wang, S.-Y.; Huang, C.-Y.; Chen, S.-L.; Wu, Y.-C.; Sheu, J.-H. “Hirsutalins I–M, eunicellin-based diterpenoids from the soft coral
Cladiella hirsute.” Tetrahedron 2013, 69, 2296–2301.
89. D'Incalci, M.; Galmarini, C. M. “A review of trabectedin (ET-743): a unique mechanism of action.” Mol. Cancer Ther. 2010, 9, 2157–2163.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code