Responsive image
博碩士論文 etd-0809113-135936 詳細資訊
Title page for etd-0809113-135936
論文名稱
Title
不同鍍膜與退火條件對銀鎂鋁金屬玻璃薄膜之光反射率改善
Reflectivity improvement of Ag-Mg-Al metallic glass films by different coating and annealing conditions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-09-09
關鍵字
Keywords
光學薄膜、金屬玻璃、反射率、電阻、薄膜形貌、粗糙度、退火處理
metallic glass, roughness, optical thin film, annealing treatment, morphology of thin film, electrical resistivity, reflectivity
統計
Statistics
本論文已被瀏覽 5752 次,被下載 496
The thesis/dissertation has been browsed 5752 times, has been downloaded 496 times.
中文摘要
金屬鍍膜具有高反射特性,因此廣泛的應用於各樣反射鍍膜需求上,但在可見光及紫外光區段中,金屬鍍膜通常有著結構對應的吸收,導致特定波長之反射下降。這項研究應用金屬玻璃薄膜的特性,以改善特定波長反射率下降之缺點。其中特別針對金屬玻璃薄膜對於光反射的三個主要影響因素進行探討:薄膜結構(電阻)、表面形貌、和能帶對應的吸收結構。根據實驗的結果來看,最主要的因素是電阻的減低,也就指說經由降低工作的Ar壓力和把Sputtering完成後的試片做適當的熱處理,藉此減少內部原子的缺陷和自由體積,進而改善其結構組成。隨著電阻的減少,在可見光與紅外光波段的光反射將會跟著提升。Sub-Tg退火處理被認為是最有希望的方法去改善反射率。然而,如果當退火溫度達到了Tg或是超過了Tg,則將會有奈米晶粒的相從均勻非晶的母相析出,產生讓紅外光與可見光波段的反射率下降的晶格消散現象。 次要的因素:薄膜的表面形貌,也應該考慮進去。一個具有較低粗糙的平滑表面則會擁有較高的光反射。此種低粗糙度的表面可以藉由降低薄膜厚度或是做適當的退火取得。
Abstract
Metallic coatings are widely used in various applications for the high reflectivity in a wide wavelength range. However, metallic coatings usually exhibit reflectivity dip due to their interband optical transitions, which can be ameliorated through alloying and breaking the crystalline structure. This investigation takes advantage of thin film metallic glasses (TFMG) to reduce the reflectivity dip of the metallic coating. In this study, the light reflectivity of the thin film metallic glass films is explored in terms of three factors, structure of thin film (electric resistance), surface morphology, and interband optical transition. According to the results, the most major factor is the decrease of electric resistance, which means to improve the structure by decreasing the atomic defects and free volumes via lower Ar working pressure and proper post-sputtering thermal annealing. With the decrease of electric resistance, the light reflection in the visible and infrared regimes would increase. Sub-Tg annealing is considered to be a promising way in improving the reflectivity. However, if the annealing temperature reaches or over Tg, there would be nanocrystalline phases precipitated out from the amorphous matrix, and interband optical transitions made its reflectivity drop in ultraviolet and visible regions.

The minor factor of film surface morphology should also be considered. A flatter film surface with a lower surface roughness Ra (to a very low level of the order of 0.2-0.4 nm) would lead to higher light reflection. The low surface roughness can be achieved by reducing the film thickness or proper annealing.
目次 Table of Contents
Table of Content i
List of Tables iv
List of Figures v
中文摘要 x
Abstract xi
Chapter 1 Introduction 1
1.1 Metallic glasses 1
1.2 Characters of silver (Ag) 3
1.3 Characters of aluminum (Al) 4
1.4 Characters of SiO2 Thin Film 5
1.5 Reflectivity 6
1.6 Correlation of resistivity and reflectivity 7
1.7 Principle of optical thin films 9
1.8 High reflection thin films 10
1.9 Properties of thin film metallic glasses (TFMGs) 11
1.9.1 Thermal properties 11
1.9.2 Electrical properties 12
1.9.3 Magnetic properties 12
1.9.4 Mechanical properties 13
1.9.5 Optical properties 14
1.10 Optical properties of the noble metallic thin films 15
1.11 Motivation 16
Chapter 2 Experimental Methods 18
2.1 Introduction of sputtering 18
2.2 Introduction of rapid thermal annealing 18
2.3 Property measurements and analyses 19
2.3.1 X-ray diffractometer (XRD) 19
2.3.2 Four-point probe 19
2.3.3 3D Alpha-Step Profilometer (alpha-step) 20
2.3.4 n&k analyzer 20
2.3.5 Atomic force microscope (AFM) 20
2.3.6 Scanning electron microscopy (SEM) 21
2.3.7 Nanoindenter 21
2.3.8 Simultaneous thermal analyzer (STA) 21
2.3.9 Transmission electron microscope (TEM) 21
2.4 Improvement approaches 22
2.4.1 Sample preparation 22
2.4.1.1 Substrate preparation 22
2.4.1.2 Thin films preparation 23
2.4.2 Experiment of “adjustment of the fabrication conditions” 24
2.4.3 Experiment of “annealing treatment” 24
Chapter 3 Results and Discussion 26
3.1 Previous study 26
3.1.1 Experiment knowledge 26
3.1.2 The characters of Ag57Mg18Al25 thin film 27
3.2 Experiment of adjustment of the fabrication conditions 27
3.2.1 Thickness 27
3.2.2 Composition 28
3.2.3 Working pressure 30
3.3 Experiment of annealing treatment 31
3.3.1 Glass transition temperature (Tg) 31
3.3.2 Analysis of results 32
3.5 Discussion 35
Chapter 4 Conclusion 37
References 38-40
Tables 41-52
Figures 53-112
參考文獻 References
[1] W. Klement, R.H. Willens, P. Duwez. Nature, 187, 869-870 (1960).
[2] A. Inoue. Acta Mater. 48, 279-306 (2000).
[3] A. Inoue. Mater. Trans. JIM, 36, 866-875 (1995).
[4] A. Inoue, T. Zhang, A. Takeuchi. Mater. Sci. Forum. 855, 269-272 (1998).
[5] A. Inoue, A. Takeuchi, T. Zhang. Metall. Mater. Trans. A 29, 1779 (1998).
[6] M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander, Jr., C.A. Ward, Applied Optics, 22, 7, 1099-1119 (1983).
[7] C. Charton, M. Fahland, Surface and Coatings Technology, 174-175, 181-186 (2003).
[8] C. Charton, M. Fahland, Surface and Coatings Technology, 142–144; 175-180 (2001).
[9] G. Hass, Journal of the Optical Society of America, 45, 945-952 (1955).
[10] 楊明輝, 工業材料雜誌, 179, 134-144 (2001).
[11] M. Yang, A. Gatto, N. Kaiser, Journal of Optics A: Pure and Applied Optics, 8, 327-332 (2006).
[12] W.B. Lacy, J.M. Williams, L.A. Wenzler, T.P. Beebe, Jr., J.M. Harris, Analytical Chemistry, 68, 1003-1011 (1996).
[13] J.L. Zhang, L.I. Jian, Y.H. Wo, Y.W. Wang, F.C. Shen, Z.H. Gan, The Chinese Journal of Nonferrous Metals, 14, 961-966 (2004).
[14] D.J. Struik, Willebrord Snell, American Council of Learned Societies, New York, (1975).
[15] H. Lamb, Philosophical Transactions of the Royal Society of London 174, 519-526 (1883).
[16] G. Lee, Oliver Heaviside, Longmans, Green & Co., London, 210 (1947).
[17] A.K. Azad, W. Zhang, Optics Letters, 30, 2945-2947 (2005).
[18] H.B. Scott, F. Stefan, Journal of Alloys and Compounds, 338, 73-79 (2002).
[19] R.T. Poole, Physics Education, 18, 280-283 (1983).
[20] U. Mizutani, Materials Science and Engineering, 99, 165-173 (1988).
[21] 李正中, 薄膜光學與鍍膜技術, 藝軒, 台北, (2006).
[22] H. Zhang, B.E. Schuster, Q. Wei and K. T. Ramesh. Scripta Mater. 54, 181-186 (2006).
[23] Y. Liu, S.Hata, K. Wada, A. Shimokohbe. 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland,102-105 (2001).
[24] Y. Liu, S. Hata, K Wata, A. Shimokohbe. Jpn. J. Appl. Phys. 40, 5382- 5388 (2001).
[25] C. Suryanarayana, A. Inoue, T. Masumoto. J. Mater. Sci. 15, 1993- 2000 (1980).
[26] F. Spaepen. Acta Matall. 25, 407-415 (1977).
[27] A. S. Argon. Acta Matall. 27, 47-58 (1979).
[28] L. H. Dai, M. Yan, L. F. Liu, Y. L. Bai. Appl. Phys. Lett. 87, 141916 (2005).
[29] X. Hu, L. Shi, X. Miao, T.C. Chong, Optical Society of America, (2005).
[30] W. Chao, H.E. Cuiqun, M. Xiangshui, http://www.paper.edu.cn, (2011).
[31] H.E. Bennett, J.O. Porteus, Journal of the Optical Society of America 51, 123-129 (1961).
[32] Y.H. Wang, S.C. Her, C.N. Hsiao, H.P. Chen, Journal of Science and Engineering Technology, 4, 81-88 (2008).
[33] S. Mozgovoy, J. Heinrich, U.E. Klotz, R. Busch, Intermetallics, 18, 2289-2291 (2010).
[34] A. Axelevitch, B. Gorenstein, G. Golan, Physics Procedia, 32, 1-13 (2012).
[35] B. Prével, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Treilleux, P. Mélinon, A. Perez, J.L Vialle, M. Broyer, Scripta Materialia, 44, 8-9, 1235-1238 (2001).
[36] A.Takeuchi, A. Inoue, Materials Transactions, 46, 12, 2817-2829 (2005).
[37] A. Inoue, K. Nakano, Y. Bizen, T. Masumoto, H.S. Chen, Japanese Journal of Applied Physics, 27, 944-947 (1988).
[38] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, T. G. Nieh, Appl. Phys. Lett., 101, 011902 (2012).
[39] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21, 105-114 (2012).
[40] Yasunori Taga, Riichi Takahasi, Surface Science, 386, 231-240 (1997).
[41] H. S. Chou, J. C. Huang,1,L. W. Chang, T. G. Nieh, Appl. Phys. Lett., 93, 191901 (2008).
[42] J. Sakurai, S. Hata , A. Shimokohbe, ATEM’03, JSME-MMD, Sep. 10-12, (2003).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code