Responsive image
博碩士論文 etd-0809114-132609 詳細資訊
Title page for etd-0809114-132609
論文名稱
Title
端鞭水母之粒線體序列研究
Mitochondrial DNA Sequence Analyses of Acromitus flagellatus
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-14
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
端鞭水母、基因定序、親緣關係、線型粒線體
Acromitus flagellates, jellyfish, Phylogenetic analyses, linear mtDNA
統計
Statistics
本論文已被瀏覽 5721 次,被下載 1044
The thesis/dissertation has been browsed 5721 times, has been downloaded 1044 times.
中文摘要
水母是海洋中常見的大型浮游生物,為無脊椎動物之中的刺胞動物門的一員。目前已發現的水母共有兩百多種,分布與生存的棲息地相當廣泛,不管在鹹水或淡水,表層或深海,都可以發現水母的蹤跡。最近研究發現,水母的粒線體基因是呈線型,粒線體基因大部分是環型,只有真菌、植物、單細胞真核生物以及水母才具有線狀的粒線體基因。但是我們對於水母的生物多樣性的了解仍然相當少。因此本研究使用 PCR 與 Primer walking 的方式來把端鞭水母Acromitus flagellatus 的粒線體基因定序出來,此資料除了可以幫助充實水母的DNA 資料庫以外,也能夠以此序列進行分析,進一步了解水母各物種間的親緣關係。本研究之中所定出的端鞭水母粒線體基因長度為14631 鹼基,此長度並非粒線體基因全長。其中含有2個rRNA、2個tRNA和13個蛋白質基因。
Abstract
Jellyfish are no-polypform of the Cnidaria. And also are typical free-swimming marine animals that has umbrella-liked bell and many tentacles.They can found in freshwater and ocean.
Recent research find that Jellyfish has linear mitochondrial DNA (mtDNA). Most mtDNA are circular molecule, but fungi, plants, unicellular eukaryotes, and jellyfish has the linear mtDNA. And many question are remain on the mtDNA in Jellyfish about transcription and evolution. To resolved these questions, this study use PCR and Primer walking to sequencing the mtDNA of Acromitus flagellatus. and 14631 bp sequence has been determined. The sequenced mtDNA containing the two rRNA, two tRNA, and 13 protein-coding genes. The genes of A. flagellates can separate in two clusters for transcription, and the transcription were proceeds to the ends of mtDNA.
目次 Table of Contents
謝辭 ..……………………………………………………………………………………i
摘要 ..………………………………………………………………………………...…ii
Abstract …………………………………………….…………………………..…..iii
目次 ..…………………………………………..………………………………………iv
圖次 ………………………………………………………………………………….vi
表次 …………………………………………………………………………………vii

一、前言 ………………………………………………………………………….…….1
1. 水母之定義及分類 ....................................................................................................1
1-1.解剖學 ...................................................................................................................1
1-2.分類學 ………………………………………………………………...................1
1-3.生態 ……………………………………………...................................................2
2. 粒線體DNA特性 ......................................................................................................3
3. 水母粒線體基因 ........................................................................................................4
4. 實驗目的 ....................................................................................................................5
二、材料與方法 ………………………………………………………………….…….6
1.樣品取得及保存 ……………………………………………………………..............6
2.水母DNA萃取 ……………………………………………………………………….6
2-1.Blood & Tissue DNA Extraction Kit (Viogene) 萃取法 …………………..........6
2-2.Phenol/chloroform DNA 萃取法 ……………………………………….............7
3.水母粒線體DNA短片段増幅 ………………………………………………...……..7
4.長片段DNA增幅定序 ………………….……………………………………….…...8
5.粒線體基因末端増幅定序 ………………………………………………………......8
6.粒線體DNA分析 …………………………………………………………………….9
三、結果 ............………………………………………………………………….……11
1.水母粒線體基因體組成以及大小、特性 …………………………………………..11
2.基因排序及間隔 …………………………………………………………………....11
3.蛋白質基因 ………………………………………………………………................12
4.基因鹼基組成及密碼子的使用 ……………………………………………………12
5.tRNA …………………………………………………………………………………13
6.親緣關係分析 …………………………………………………………………..….13
四、討論 ………………………………………………………………………………15
1.本次研究主要成果 ……………………………………………………………........15
2.水母間親緣關係 …………………………………………………………………....16
五、參考文獻 .............................................................................................................17
六、附錄 ...............................................................................................................41
附錄一、水母各綱之代表物種粒線體基因序列經Neighbor-Joining法分析後之結果 ...................................................................................................................41
附錄二、端鞭水母Acromitus flagellates 之外觀圖 ..................................................42
附錄三、RACE 法進行PCR步驟簡圖 .....................................................................43
附錄四、Acromitus flagellatus、Carybdea rastonii、Mastigias papua、Craspedacusta sowerbyi以及Phyllorhiza punctata 之16s基因序列比對 ..........................44
圖一、端鞭水母Acromitus flagellates粒線體基因排序..............................................21
圖二、本研究中所定出的端鞭水母粒線體基因序列 ...............................................22
圖三、端鞭水母與海月水母之tRNA-Met及tRNA- Trp的二級結構之比較 ........30
圖四、使用Neighbor-Joining法分析粒線體16S基因之DNA序列後所得的水母親緣關係圖 ...........................................................................................................31
圖五、使用Neighbor-Joining法分析粒線體cox1基因之DNA序列後所得的水母親緣關係圖 ...........................................................................................................32
圖六、使用Neighbor-Joining法分析粒線體cox1基因之胺基酸序列後所得的水母親緣關係圖 ...........................................................................................................33
圖七、使用Neighbor-Joining法分析粒線體cox2基因之DNA序列後所得的水母親緣關係圖 ...........................................................................................................34
圖八、使用Neighbor-Joining法分析粒線體cox2基因之胺基酸序列後所得的水母親緣關係圖 ...........................................................................................................35
圖九、使用Neighbor-Joining法分析粒線體12S基因之DNA序列後所得的水母親緣關係圖 ...........................................................................................................36
圖十、使用Neighbor-Joining法分析粒線體nad1基因之DNA序列後所得的水母親緣關係圖 ...........................................................................................................37
圖十一、使用Neighbor-Joining法分析粒線體nad1基因之胺基酸序列後所得的水母親緣關係圖 ...................................................................................................38
圖十二、使用Neighbor-Joining法分析粒線體nad4基因之DNA序列後所得的水母親緣關係圖 .......................................................................................................39
圖十三、使用Neighbor-Joining法分析粒線體nad4基因之胺基酸序列後所得的水母親緣關係圖 ...................................................................................................40
表一、端鞭水母Acromitus flagellates 粒線體基因位置及特性 …………………21
表二、六種水母之間的基因長度比較 ................................................................29
參考文獻 References
Aerne B. 1996. The hydrozoan life cycle: a small secreted protein is involved in specification of the polyp stage. Dev Genes Evol 206:337-343.
Bayha K.M. and Dawson M.N.. 2010. New Family of Allomorphic Jellyfishes, Drymonematidae (Scyphozoa, Discomedusae), Emphasizes Evolution in the Functional Morphology and Trophic Ecology. Biol Bull 219 : 249–267.
Beagley C.T., Okada N.A., Wolstenholme D.R. 1996. Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc. Natl. Acad. Sci. USA 93:5619-5923.
Bouillon J., Boero F. and Fraschetti S. 1991. The life cycle of Laodicea indica (Laodiceidae, Leptomedusae, Cnidaria). Hydrobiologia, 217, 151-157.
Brand M.D. 1997. Regulation analysis of energy metabolism. J. Exp. Biol. 200:193-202.
Bridge D., Cunningham C.W., DeSalle R. and Buss L.W.. 1995. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol. 12:679-689.
Bridge D., Cunningham C.W., Schierwater B., Desalle R., Buss L.W. 1992. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc. Natl. Acad. Sci. USA. 89:8750-8753.
Cartwright P., Evans N.M., Dunn C.W., Marques A.C., Miglietta M.P., Schuchert P., Collins A.G. 2008. Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria). J Mar Biol Assoc 88: 1663–1672.
Cartwright P., Halgedahl S.L., Hendricks J.R., Jarrard R.D., Marques A.C., Collins A.G., Lieberman B.S.. 2007. Exceptionally Preserved Jellyfishes from the Middle Cambrian. PLoS One 2: e1121.
Collins A.G.. 2002 Phylogeny of Medusozoa and the evolution of cnidarian life cycles. J Evol Biol 15: 418–432.
Collins A.G., Schuchert P., Marques A.C., Jankowski T., Medina M., Schierwater B.. 2006. Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97-115.
Daly M., Brugler M.R., Cartwright P., Collins A.G., Dawson M.N., Fautin D.G., France S.C., Mcfadden C.S., Opresko D.M., Rodriguez E., Romano S.L., and Stake J.L.. 2010. The phylum Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668: 127–182.
Lavrov D.V., Lang, B.F. 2005. Transfer RNA gene recruitment in mitochondrial DNA. Trends. Genet. 21:129-33.
Erpenbeck D., Hooper J.N.A., Wörheide G. 2006. CO1 phylogenies in diploblasts and the ´Barcoding of Life´ - are we sequencing a suboptimal partition? Mol. Ecol. Notes. 6: 550–553.
Fricova D., Valach M., Farkas Z., Pfeiffer I., Kucsera J., Tomaska L. and Nosek J.. 2010. The mitochondrial genome of the pathogenic yeast Candida subhashii: GC-rich linear DNA with a protein covalently attached to the 5' termini. Microbiology. 156:2153-2163.
Graeber M.B., Muller U.. 1998. Recent developments in the molecular genetics of mitochondrial disorders. J. Neurol. Sci. 153:251-263.
Hsieh Y.H. and Rudloe J.. 1994. Potential of utilizing jellyfish as food in Western countries. Trends Food Sci Technol, 5 : 225-229.
Kayal E and Lavrov D V.. 2008. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410: 177–186
Kayal E., Bentlage B., Collins A.G., Kayal M., Pirro S. and Lavrov D.V.. 2012. Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 4 : 1-12.
Kier W.M. 2012. The diversity of hydrostatic skeletons. J Exp Biol. 215 : 1247–1257.
Kim J., Kim W., Cunningham C.W.. 1999. A new perspective on lower metazoan relationships from 18 S rDNA sequences. Mol Biol Evol 16: 423–427
Kondo R., Matsuura E.T., Chigusa S.I.. 1992. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method. Genet. Res. 59: 81–84.
Kroemer G., Dallaporta B., Resche-Rigon M.. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60: 619–642.
Kumar S., Tamura K., Nei M.. 2004 . MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163.
Lang B.F., Gray M.W., Burger G.. 1999. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Gene. 33: 351–397.
Lukic-Bilela L., Brandt D., Pojskic N., Wiens M., Gamulin V., Müller, W.E.. 2008. Mitochondrial genome of Suberites domuncula: Palindromes and inverted repeats are abundant in non-coding regions. Gene. 412: 1–11.
Meusel M.S., Moritz R.F.. 1993. Transfer of paternal mitochondrial DNA during fertilization of honeybee (Apis mellifera L.) eggs. Curr. Genet. 24: 539–543.
Mills C.E. 2001. Jellyfish blooms: are populations increasing globally in response to changing. Hydrobiologia 451: 55–68.
Mills C.E.. 2008. Stauromedusae: List of all valid species names. Retrieved 2008-08-11.
Nosek J., Tomáška L'U., Fukuhara H., Suyama Y., Kováč L.. 1998. Linear mitochondrial genomes: 30 years down the line. Trends in genetics. 14:184-188.
Park E., Hwang D.S., Lee J.S., Song J.I., Seo T.K., Won Y.J.. 2012. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Mol Phylogenet Evol 62:329-345.
Purcell J.E.. 2005. Climate effects on formation of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc U.K. 85:461-476.
Richmond M. 1997. A guide to the seashores of Eastern Africa and the Western Indian Ocean islands. Sida/Department for Research Cooperation, SAREC: Stockholm, Sweden. ISBN 91-630-4594-X. 448 pp.
Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol.Evol. 4: 406–425.
Satterlie R.A.. 2011. Do jellyfish have central nervous systems?. J Exp Biol. 214 : 1215–1223.
Satterlie R.A. 2002. Neuronal control of swimming in jellyfish: a comparative story. Can J Zool, 80: 1654–1669.
Shao Z., Graf S., Chaga O.Y., Lavrova D.V.. 2006. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene 381: 92-101
Straehler-Pohl I., Widmer C.L., Morandini A.C.. 2011. Characterizations of juvenile stages of some semaeostome Scyphozoa (Cnidaria), with recognition of a new family (Phacellophoridae). Zootaxa 2741: 1–37.
van Oppen M.J., Catmull J., McDonald B.J., Hislop N.R., Hagerman P.J., Miller D.J. 2000. The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J. Mol. Evol. 55: 1–13.
Voigt O., Erpenbeck D., and Wörheide G.. 2008. A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9: 350–359
Wilson A.C., Cann R.L., Carr S.M., George M., Gyllensten U.B., Helm-Bychowski K.M., Higuchu R.G., Palumbi S.R., Prager E.M., Sage R.D., Stoneking M.. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linnean. Soci. 26: 375–400.
Wang X., Lavrov D.V.. (2007). Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol. Biol. Evol. 24: 363–373.
Zou H., Zhang J., Li W., Wu S., Wang G.. 2012. Mitochondrial Genome of the Freshwater Jellyfish Craspedacusta sowerbyi and Phylogenetics of Medusozoa. PLoS ONE 7 12: e51465.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code