Responsive image
博碩士論文 etd-0809114-151321 詳細資訊
Title page for etd-0809114-151321
論文名稱
Title
新型無用戶間干擾多載波分碼多工上鏈系統
A Novel MAI-free Uplink MC-CDMA System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
峰均值功率比、多重存取干擾、稀疏高斯序列、多載波分碼多工系統
MC-CDMA, MAI, PAPR, sparse Gaussian integer sequence (SGIS)
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
多載波分碼多工系統(Multi-Carrier Code Division Multiple Access, MC-CDMA)是一種高速率多重存取的無線傳輸系統,其在頻率選擇性衰減通道(Frequency Selecting Fading Channel)環境下,具有頻率多樣性(Frequency Diversity)。然而當此系統應用在上鏈(Uplink)傳輸時,展頻碼(Spreading Code)會因為不同使用者的訊號通過不同的頻率選擇性衰減通道,使其展頻碼間之正交性失去,造成嚴重的多重存取干擾(Multiple Access Interference, MAI)。在本論文中,我們利用稀疏高斯整數序列(Sparse Gaussian Integer Sequence, SGIS)來建構我們的轉換矩陣,此轉換矩陣是將展頻碼矩陣與反快速傅立葉轉換(Inverse Fast Fourier Transform, IFFT)形成一低複雜度的矩陣。SGIS與其對偶序列具有的優良特性,可以有效降低MAI,且稀疏的特性也會使得此系統的峰均值功率比(Peak-to-Average Power Ratio, PAPR)有效降低,在傳送端的複雜度也可以大幅度地降低。由於轉換矩陣為一循環矩陣且又為么正矩陣(Unitary Matrix),當系統為半載的情況時,我們可以將MAI完全消除。多載波分碼多工系統相較於單載波分碼多工系統(Single-Carrier Code Division Multiple Access, SC-FDMA)擁有完整的頻率多樣性,SC-FDMA的頻率多樣性取決於其快速傅立葉轉換(Fast Fourier Transform, FFT)的大小,所以當多樣性提高,其運算複雜度亦會大幅度的上升。而擁有完整的頻率多樣性,可以有效地降低在頻率選擇性衰減通道之中的錯誤率。
Abstract
Multi-Carrier Code Division Multiple Access (MC-CDMA) Systems provides a high data rate multiple access wireless communications, which retain frequency diversity under a frequency selective fading channel. However, when MC-CDMA system is applied in uplink transmission, because of spreading codes for different user’s frequency selective fading channel, the orthogonality between the spreading code will lost, which cause server Multiple Access Interference (MAI) problem. In this paper, the sparse Gaussian integer sequence (SGIS) are used to construct the low complexity transform matrix, which is the combination of spreading matrix and inverse fast fourier transform (IFFT) matrix. SGIS and its dual sequence have some great property that mitigates MAI, and the feature of sparse also effectively reduce the PAPR, the computational complexity at transmitter will also be reduced. Moreover, the transform matrix are a circular matrix and unitary matrix, we can eliminate MAI when the system is half-loading. MC-CDMA compared to Single-Carrier Code Division Multiple Access (SC-FDMA) has full frequency diversity, unlike SC-FDMA that its frequency diversity depends on FFT size, so when enhance the diversity, the computational complexity will increase significantly.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
第一章 導論 1
1.1 研究動機 3
1.2 論文架構 3
第二章 系統介紹 4
2.1 正交分頻多工系統 4
2.2 多載波分碼多工系統 8
第三章 轉換矩陣之設計 11
3.1 展頻碼矩陣與轉換矩陣 11
3.2 使用稀疏高斯序列之轉換矩陣產生方式 12
第四章 新多載波分碼多工上鏈系統 15
4.1 傳送端架構 15
4.2 接收端架構 16
4.3 多用戶間的干擾消除 20
4.4 錯誤率推導 22
第五章 模擬結果 28
5.1 選擇性架構 28
5.2 錯誤率比較 29
5.2.1 調變方式相同 30
5.2.2 OFDM Symbol總位元數同 34
5.2.3 峰均值功率比 38
第六章 結論 40
參考文獻 41
中英對照表 49
縮寫對照表 55
參考文獻 References
[1] A. J. Viterbi, CDMA: Principle of Spread Spectrum Communication, Addison Wesley, 1995.
[2] S. Hara and R. Prasad, “DS-CDMA, MC-CDMA and MT-CDMA for mobile multi-media communications,” Proc. of IEEE VTC, vol. 2, no. 5, pp.1106–1110, Apr. 1996.
[3] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., vol. 35, no. 12, pp.126–133, Dec. 1997.
[4] A. C. McCormick and E. A. AI-Susa, “Multicarrier CDMA for future generation mobile communication,” IEEE Electron. & Commun. Eng., vol. 14, no. 5, pp.52–60, Apr. 2002.
[5] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Veh. Technol., vol. 40, no. 2, pp. 291–302, May 1991.
[6] N. Krishnan, R. D. Yates, and N. B. Mandayam, “Uplink linear receivers for multi-cell multiuser MIMO with pilot contamination:large system analysis,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4360-4373, Aug. 2014.
[7] P. Botsinis, S. X. Ng, and L. Hanzo, “Fixed – complexity quantum-assisted multi-user detection for CDMA and SDMA,” IEEE Trans. Commun., vol. 62, no. 3, pp. 990-1000, Mar. 2014.
[8] A. Silva, S. Teodro, and A. Gameiro, “Iterative frequency-domain detection for IA-precoded MC-CDMA systems,” IEEE Trans. Commun., vol. 62, no. 4, pp. 1240-1248, Apr. 2014.
[9] S. H. Tsai, Y. P. Lin, and C. C. J. Kuo, “MAI-free MC-CDMA systems based on Hadamard–Walsh codes,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3166–3179, Aug. 2006.
[10] P. H. Moose, “A technique for orthogonal frequency division multiplexing frequency offset correction,” IEEE Trans. Commun., vol. 42, no. 10, pp. 2908–2914, Oct. 1994.
[11] H. H. Chen, J. F. Yeh, and N. Suehiro, “A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications,” IEEE Commun. Mag., vol. 39, no. 10, pp. 126–135, Oct. 2001.
[12] J. Zhang and T. Konstantopoulos, “Multiple-access interference processes are self-similar in multimedia CDMA cellular nerworks,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 1024–1038, Mar. 2005.
[13] W. M. Jang, L. Nguyen, and P. Bidarkar, “MAI and ICI of synchronous downlink MC-CDMA with frequency offset,” IEEE Trans. Wireless Commun., vol. 5, no. 3, pp. 693–703, Mar. 2006.
[14] L. Sanguinetti, L. Taponecco, and M. Morelli, “Interference-free code design for MC-CDMA uplink transmissions,” IEEE Trans. Wireless Commun., vol. 8, no. 11, pp. 5461-5465, Nov. 2009.
[15] W. X. Meng, S. Y. Sun, H. H. Chen, and J. Q. Li, “Multi-user interference cancellation in coded CDMA with diversity gain,” IEEE Wireless Commun. Lett., vol. 2, no. 3, pp. 303-306, June 2013.
[16] J.-C. Chen, M.-H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast., vol. 57, no. 3, pp. 752-756, Sep. 2011.
[17] S.-H. Wang, J.-C. Sie, C.-P. Li, and Y.-F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242-1251, Apr. 2011.
[18] W.-C. Huang, Y.-S. Yang, C.-P. Li, and H.-J. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461-470, June 2013.
[19] W.-C. Huang, C.-P. Li, and H.-J. Li, “On the power allocation and system capacity of OFDM systems using superimposed training schemes,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1731-1740, May 2009.
[20] C.-P. Li and W.-W. Hu, “Super-imposed training scheme for timing and frequency synchronization in OFDM systems,” IEEE Trans. Broadcast., vol. 53, issue 2, pp. 574-583, Jun. 2007.
[21] L. J. Cimini, “Analysis and simulation of a mobile radio channel using orthogonal frequency division multiplexing,” IEEE Trans. Commun., vol. 33, no. 7, pp. 665–675, Jul. 1985.
[22] W. Y. Zou and Y. Wu, “COFDM: an overview,” IEEE Trans. Broadcast., vol. 41, no. 1, pp. 1–8, Mar. 1995.
[23] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: a multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392–399, Aug. 1995.
[24] H. C. Wu, “Analysis and characterization of intercarrier and interblock interferences for wireless mobile OFDM systems,” IEEE Trans. Broadcast., vol. 52, no. 2, pp. 203–210, Jun. 2006.
[25] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[26] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std. 802.16-2004, Oct. 2004.
[27] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[28] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[29] W.-W. Hu, C.-P. Li, and J.-C. Chen, “Peak power reduction for pilot-aided OFDM systems with semi-blind detection,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1056-1059, Jul. 2012.
[30] C.-P. Li, S.-H. Wang, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, vol. 6, pp. 1712-1718, Jun. 2012.
[31] J.-C. Chen and C.-P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 17, no. 11, pp. 933-936, Nov. 2010.
[32] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941-944, Nov. 2009.
[33] P. K. Tseng, S. H. Wang, and C. P. Li, “A novel low complexity cell search scheme for LTE systems,” in Proc. 2010 IEEE 71st Vehicular Technology Conference (IEEE VTC 2010 Spring), Taipei, Taiwan, 16-19 May, 2010.
[34] L. L. Yang and L. Hanzo, “Performance of generalized multicarrier DS-CDMA over Nakagami-m fading channels,” IEEE Trans. Commun., vol. 50, no. 6, pp. 956–966, Jun. 2002.
[35] Y. Cao, T. T. Tjhung, and C. C. Ko, “Performance of a new premulticoded multicarrier DS-CDMA system in Nakagami fading,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1363–1373, Jul. 2007.
[36] A. S. Ling and L. B. Milstein, “The effects of spatial diversity and imperfect channel estimation on wideband MC-DS-CDMA and MC-CDMA,” IEEE Trans. Commun., vol. 57, no. 10, pp. 2988–3000, Oct. 2009.
[37] D. K. Kim and S. H. Hwang, “Capacity analysis of an uplink synchronized multicarrier DS-CDMA system,” IEEE Commun. Lett., vol. 6, no. 3, pp. 99–101, Mar. 2002.
[38] G. Manglani and A. K. Chaturvedi, “Multi-tone CDMA design for arbitrary frequency offsets using orthogonal code multiplexing at the transmitter and a tunable receiver,” IET Commun., vol. 5, no. 15, pp. 2157–2166, Oct. 2011.
[39] N. Yee, J. P. M. G. Linnartz, and G. Fettweis, “Multi-carrier CDMA in indoor wireless radio networks,” in Proc. IEEE Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), Yokohama, Japan, Sep. 1993, pp. 109–113.
[40] I. Cosovic, M. Schnell, and A. Springer, “Combined equalization for uplink MC-CDMA in Rayleigh fading channel,” IEEE Trans. Commun., vol. 53, no. 10, pp. 1609-1614, Oct. 2005.
[41] N. Yee, J. P. M. G. Linnartz, and G. Fettweis, "Multi-carrier CDMA in indoor wireless radio networks," IEICE Trans. Commun., vol. E77-B, no. 7, pp. 900–904, Jul. 1994.
[42] W. M. Jang, L. Nguyen, and M. W. Lee, “MAI and ICI of asynchronous uplink MC-CDMA with frequency offset,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2164–2179, Jul. 2008.
[43] J. C. Lin, “Low-complexity noncoherent PN code chip timing recovery with resistance to MAI for a bandlimited CDMA Receiver,” IEEE Trans. Veh. Technol., vol. 52, no. 5, pp. 1215–1328, Sep. 2003.
[44] A. M. Tulino, L. Li, and S. Verdu, “Spectral efficiency of multicarrier CDMA,” IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 479-505, Feb. 2005.
[45] S. Boussakta and A. G. J. Holt, “Fast algorithm for calculation of both Walsh- Hadamard and Fourier transforms (FWFTs),” IET Election. Lett., vol. 25, no. 20, pp. 1252–1354, Sep. 1989.
[46] S. Wang, S. Zhu, and G. Zhang, “Walsh- Hadamard coded spectral efficient full frequency diversity OFDM system,” IEEE Trans. Commun., vol. 58, no. 1, pp. 28–34, Jan. 2010.
[47] H. Bogucka, “Application of the joint discrete Hadamard-inverse Fourier transform in a MC-CDMA wireless communication system-performance and complexity studies,” IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 2013–2018, Nov. 2004.
[48] M. S. Ahmed, S. Boussakta, B. S. Sharif, and C. C. Tsimenidis, “OFDM based on low complexity transform to increase multipath resilience and reduce PAPR,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5994–6007, Dec. 2011.
[49] C. P. Li, S. H. Wang, and C. L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM Systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916–2921, May 2010.
[50] W. W. Hu, S. H. Wang, and C. P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 4006–4016, Nov. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.181.209
論文開放下載的時間是 校外不公開

Your IP address is 3.22.181.209
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code