Responsive image
博碩士論文 etd-0809114-151447 詳細資訊
Title page for etd-0809114-151447
論文名稱
Title
使用改良式基因演算法之可變長度錯誤更正碼設計
Designs of Variable-Length Error-Correcting Codes Using Modified Genetic Algorithm
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
自由距離、自由距離下界、基因演算法、訊號源-通道聯合編碼、可變長度錯誤更正碼
variable length error correcting code, joint source-channel coding, Genetic algorithm, free distance lower bound, free distance
統計
Statistics
本論文已被瀏覽 5665 次,被下載 0
The thesis/dissertation has been browsed 5665 times, has been downloaded 0 times.
中文摘要
在這篇論文中,我們想利用基因演算法(Genetic Algorithm, GA)去建構在訊號源-通道聯合編碼(Jointly Source-Channel Coding, JSCC)的傳輸架構下的可變長度錯誤更正碼(Variable- Length Error-Correcting Code, VLEC),並針對某些自由距離下界(Free Distance Lower Bound)來建構一組平均碼長(Average Codeword Length)較小的碼字簿。為了達到此目的,我們修改不能適用在變長度碼的傳統型基因演算法,針對降低演化複雜度與符元錯誤率(Symbol Error Rate, SER)提出能適用在演化可變長度錯誤更正碼的改良式基因演算法。模擬分析結果中,比較文獻與我們的碼字簿之符元錯誤率,結果我們所建構碼字簿的錯誤率不管在可加性高斯白雜訊(Additive White Gaussian Noise, AWGN)或雷利衰減通道(Rayleigh Fading Channel)的錯誤率兩方都差不多,甚至更好;在建構相同條件的碼字簿方面,我們的碼字簿其平均碼長與文獻比較幾乎比他們更短,顯然有更好的解被我們找出。
Abstract
In this thesis, we want to use genetic algorithms (GA) to construct the variable length error correcting codes (VLEC) in the transmission system of joint source-channel coding (JSCC) and construct codebooks with smaller average codeword length for some free distance lower bound. To achieve this goal, we modify the traditional genetic algorithm for variable length codes. For reducing the evolution of complexity and symbol error rate(SER) which proposed new genetic algorithm can be applied in the evolution of variable length error correcting codes. Simulation results, we compare the SER of our codebooks with reference and have almost error performance in additive white Gaussian noise (AWGN) channel and Rayleigh fading channel, even have better error performance in tern of same condition. We find some codebooks’ average codeword length that shorter than reference, obviously we have a better solution is to find out.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
表格目次 viii
第一章 導論 1
1.1 研究背景 2
1.2 研究動機 2
1.3 論文架構 3
第二章 編碼與演算法介紹 4
2.1 訊號源與通道聯合編碼 4
2.2 可變長度錯誤更正碼 6
2.3 基因演算法 7
第三章 可變長度錯誤更正碼 8
3.1 自由距離 8
3.2 序列最大事後機率解碼 9
3.3 建立可變長度錯誤更正碼樹狀圖 11
3.4 變長度錯誤前置更正碼的理論錯誤率 14
第四章 建構可變長度錯誤更正碼 15
4.1 基因演算法基本架構 15
4.1.1 交配 16
4.1.2 突變 18
4.1.3 選擇 18
4.2 使用改良型基因演算法建構VLEC 19
4.2.1 建構符元數量不同的VLEC碼字簿 19
4.2.2 碼長演化 25
4.2.3 演算法總體流程 26
第五章 模擬結果 29
5.1 符元錯誤率分析 29
5.2 比較VLEC各項數值 32
第六章 結論 44
參考文獻 45
中英對照表 51
縮寫對照表 55
參考文獻 References
[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech. J., vol. 27, pt. I, pp. 379–423; pt. II, pp. 623–656, 1948.
[2] W. E. Hartnett, Foundation of Coding Theory. D. Reidel Publishing Co., 1974.
[3] M. A. Bernard and B. D. Sharma, “Some combinatorial results on variable length error-correcting codes,” ARS Combinatoria, vol. 25B, pp. 181–194, 1988.
[4] M. A. Bernard and B. D. Sharma, “A lower bound on average codeword length of variable length error-correcting codes,” IEEE Trans. Inf. Theory, vol. 36, no. 6, pp. 1474–1475, Nov. 1990.
[5] V. Buttigieg, “Variable-length error-correcting codes,” Ph.D. thesis, Univ. of Manchester, England, 1995.
[6] V. Buttigieg and P. G. Farrell, “Variable-length error-correcting codes,” IEEE Proc. Commun., vol. 147, no. 4, pp. 211–215, Aug. 2000.
[7] Y.-M. Huang, T.-Y. Wu, and Y. S. Han, “An A∗-based algorithm for constructing reversible variable-length codes with minimum average codeword length,” IEEE Trans. Commun., vol. 58, no. 11, pp. 3175–3185, Nov. 2010.
[8] S.-L. Shieh, P.-N. Chen, Y. S. Han, and T.-Y. Wu, “Early-elimination modification for priority-first search decoding,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3459–3469, Dec. 2010.
[9] T.-Y. Wu, P.-N. Chen, F. Alajaji, and Y.S. Han, “On the design of variable-length error-correcting codes,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3553–3565, Sept. 2013.
[10] R. G. Maunder and L. Hanzo, “Genetic algorithm aided design of component codes for irregular variable length coding,” IEEE Trans. Commun., vol. 57, no. 5, pp. 1290–1297, May 2009.
[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989.
[12] Y. Yu and X. Yu, “Cooperative coevolutionary genetic algorithm for digital IIR filter design,” IEEE Trans. Ind. Electron., vol. 53, no. 3, pp. 1311–1318, June 2007.
[13] Holland, J. H., Adaptation in natural and artificial systems. Ann Arbor, MI: The University of Michigan Press, 1975.
[14] Holland, J. H., “Gnentic algorithms,” Sci. Am., pp.66–72, July, 1992.
[15] Hamming, R. W. “ Error detecting and error correcting codes, ” Bell Syst. Tech. J., vol. 29, pp. 147–160, Apr. 1950.
[16] Hamming, R.W., Coding and Information Theory. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.
[17] Lin, S., An Introduction to Error Control Codes. Prentice-Hall, NJ., 1970.
[18] Peterson, W.W. and Weldon, E.J., Error Correcting Codes. The MIT press, Cambridge, 1972.
[19] D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proc. IRE, no. 40, pp. 1098–1101, Sept. 1952.
[20] S. Roman Coding and Information Theory. 1992 :SpringerVerlag.
[21] D. E. Knuth “Dynamic Huffman coding,” Journal of Algorithms, vol. 6, pp.163–180, 1985.
[22] J.B. Connell, “A Huffman-Shannon-Fano code,” IEEE, vol. 61, pp. 1016–1047, 1973.
[23] F. Alajaji, N. Phamdo, and T. Fuja, “Channel codes that exploit the residual redundancy in CELP-encoded speech,” IEEE Trans. Speech Audio Process., vol. 4, pp. 325–336, Sept. 1996.
[24] E. Ayanoglu and R. Gray, “The design of joint source and channel trellis waveform coders,” IEEE Trans. Inf. Theory, vol. 33, no. 6, pp. 855–865, Nov. 1987.
[25] P. Duhamel and M. Kieffer, Joint Source-Channel Decoding: A Cross- Layer Perspective with Applications in Video Broadcasting over Mobile and Wireless Networks. Academic Press, 2010.
[26] Y. Zhong, F. Alajaji, and L. L. Campbell, “On the joint source-channel coding error exponent for discrete memoryless systems,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1450–1468, Apr. 2006.
[27] Jong D., Analysis of the behavior of a class of a genetic adaptive systems. Ph. D Dissertation, The University Michigan, Ann Arbor, 1975.
[28] Y.-M. Huang, Y. S. Han, and T.-Y. Wu, “Soft-decision priority-first decoding algorithms for variable-length error-correcting codes,” IEEE Commun. Lett., vol. 12, no. 8, pp. 572–574, Aug. 2008.
[29] R. Bauer and J. Hagenauer, “Iterative source/channel-decoding using reversible variable length codes,” in Proc. 2000 Data Compression Conf., pp. 93–102.
[30] S. Kaiser and M. Bystrom, “Soft decoding of variable-length codes,” in Proc. 2000 IEEE Int. Conf. on Commun., vol. 3, pp. 1203–1207.
[31] A. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.
[32] A. Diallo, C. Weidmann, and M. Kieffer, “Optimizing the free distance of error-correcting variable-length codes,” in Proc. IEEE Int. Workshop Multimedia Signal Proc. (MMSP), 2010.
[33] A. Diallo, C. Weidmann, and M. Kieffer, “New free distance bounds and design techniques for joint source-channel variable-length codes,” IEEE Trans. Commun., 2012.
[34] H. Hijazi, A. Diallo, M. Kieffer, L. Liberti, and C. Weidmann, “A MILP approach for designing robust variable-length codes based on exact free distance computations,” in Proc. Data Compression Conf., 2012.
[35] C. Lamy and J. Paccaut, “Optimized constructions for variable-length error correcting codes,” in Proc. IEEE Inform. Theory Workshop, 2003.
[36] J. Wang, L.-L. Yang, and L. Hanzo, “Iterative construction of reversible variable-length codes and variable-length error-correcting codes,” IEEE Commun. Lett., vol. 8, no. 11, pp. 671–673, Nov. 2004.
[37] T.-Y. Wu, P.-N. Chen, F. Alajaji, and Y. S. Han, “On the construction and MAP decoding of optimal variable-length error-correcting codes,” in Proc. 2011 IEEE Int. Symp. Inform. Theory, pp. 2223–2227.
[38] V. B. Balakirsky, “Joint source-channel coding with variable length codes,” in Proc. 1997 IEEE Int. Symp. Inform. Theory, pp. 419.
[39] V. Buttigieg, personal communication, 2012.
[40] A. Diallo, C. Weidmann, and M. Kieffer, “Efficient computation and optimization of the free distance of variable-length finite-state joint source-channel codes,” IEEE Trans. Commun., vol. 59, no. 4, pp. 1043–1052, Apr. 2011.
[41] Y. S. Han, P.-N. Chen, and H.-B. Wu, “A maximum-likelihood softdecision sequential decoding algorithm for binary convolutional codes,” IEEE Trans. Commun., vol. 50, no. 2, pp. 173–178, Feb. 2002.
[42] Y. S. Han, T.-Y. Wu, H.-T. Pai, P.-N. Chen, and S.-L. Shieh, “Priority first search decoding for convolutional tail-biting codes,” in Proc. 2008 Int. Symp. Inform. Theory and its Applications, pp. 1–6.
[43] C. Lamy and F. X. Bergot, “Lower bounds on the existence of binary error-correcting variable-length codes,” in Proc. 2003 IEEE Inform. Theory Workshop, pp. 300–303.
[44] T. Wenisch, P. F. Swaszek, and A. K. Uht, “Combined error correcting and compressing codes,” in Proc. 2001 IEEE Int. Symp. Inform. Theory, pp. 238.
[45] J. C. Maxted and J. P. Robinson, “Error recovery for variable length codes,” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 794–801, Nov. 1985.
[46] S. A. Savari and J. Kliewer, “When Huffman meets Hamming: a class of optimal variable-length error correcting codes,” in Proc. 2010 Data Compression Conf., pp. 327–336.
[47] J. Kliewer and R. Thobaden, “Iterative joint source-channel decoding of variable-length codes using residual source redundancy,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 919–929, May 2005.
[48] K. Lakovic and J. Villasenor, “An algorithm for construction of efficient fix-free codes,” IEEE Commun. Lett., vol. 7, no. 8, pp. 391–393, 2003.
[49] C.-W. Lin, J.-L. Wu, and Y.-J. Chuang, “Two algorithms for constructing efficient Huffman-code based reversible variable length codes,” IEEE Trans. Commun., vol. 56, no. 1, pp. 81–89, 2008.
[50] R. Thobaben and J. Kliewer, “An efficient variable-length code construction for iterative source-channel decoding,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2005–2013, July 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.218.147
論文開放下載的時間是 校外不公開

Your IP address is 13.59.218.147
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code