Responsive image
博碩士論文 etd-0809114-180628 詳細資訊
Title page for etd-0809114-180628
論文名稱
Title
對抗白色念珠菌之海洋鏈黴菌物種的抗菌成份
Anti-microbial Components from Marine-derived Streptomyces spp. Against Candida albicansis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
307
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-30
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
分子網絡、海洋細菌、鏈黴菌、白色念珠菌、抗菌活性
Anti-microbial Activity, Molecular Networking, Marinebacteria, Streptomyces spp., Candida albicans
統計
Statistics
本論文已被瀏覽 5692 次,被下載 36
The thesis/dissertation has been browsed 5692 times, has been downloaded 36 times.
中文摘要
海洋放線菌被認為是海洋生物活性物質來源之潛在資源。先前已有許多海洋天然物研究者從鏈黴菌(Streptomyces)中分離獲得許多具有特殊活性及新穎結構的二次代謝物,並進一步以這些活性海洋天然物作為開發新型藥物的來源。在本研究中,我們從小琉球外海深海底泥中分離出兩株海洋細菌LQ-II和GT,這兩株菌皆具有抑制白色念珠菌(Candida albicans)的作用。藉由16S rRNA定序分別確認為Streptomyces albogriseolu LQ-II,和S. gougerotii GT。
在先前的研究文獻整理得知不同種生物體或多或少皆會產生相同的二次代謝物。這種現象常造成天然物的重複分離。為了避免自不同物種中重複的分離出已知的化合物,我們希望藉由液相層析串聯式質譜儀(LC-MS/MS)和分子網絡(molecular networking)分析開發新的研究策略,以更快的搜尋結構新穎具生物的活性化合物。到目前為止,我們從S. albogriseolus LQ-II的乙酸乙酯萃取物已經分離出12個化合物;包括六個二酮哌嗪類(L1~L6)、一個纈氨黴素(L7) 、一個homononactinic acid (L8)、一個固醇類(L9)、一個對苯二甲酸乙二酯類(L11)、一個色胺類衍生物(L10)、一個核苷類(L12),從S. gougerotii GT的乙酸乙酯萃取分離出14個化合物,八個二酮派嗪類(G1~G8) 、一個芴酮類(G13) 、一個β氧色胺(G14)。其中有三個已知γ-丁內酯類化合物(G10~G12)跟一個新的γ-丁內酯類衍生物(G9)。此26個化合物的活性抗菌與細胞毒殺作用試驗正在進行中。
Abstract
Marine actinobacteria was considered as potential sources of bioactive compounds. Many natural products research pioneers found lots of bioactive secondary metabolites with novel skeletons from Streptomyces spp., some of which have been developed as new drugs. In our researches on marine microbial natural products, we found two marine-derived bacterial strains LQ-II and GT, which were isolated from the deep-sea sediments in the offshore of Siao-liou-ciou. Both strains showed apparently inhibitory effect against Candida albicans. By the 16S rRNA sequence analysis, the strains LQ-II and GT were identified as S. albogriseolus and S. gougerotii, respectively
Literature surveys indicated that different organisms can produce more or less similar compounds. It will confuse scientists to make reduplicative works on the isolation of known compounds. To avoid the reduplicative isolation, we plan to develop a new research strategy by the modern analytic equipment, LC-MS/MS, and the state-of-art computation, molecular modeling, to target the isolation of new compounds. Till now, we isolated 12 compounds from the ethyl acetate extract of S. albogriseolus LQ-II, including six diketopiperazines (L1~L6), one valinomycin (L7), one homononactinic acid derivative (L8), one steroid (L9), one N-acetyl-β-oxotryptamine (L10), one terephthalate (L11), one nucleoside (L12) and 14 compounds from the ethyl acetate extract of S. gougerotii GT, including eight diketopiperazines (G1~G8) , one 9-fluorenone (G13), one β-oxo tryptamine derivative (G14), and four γ-butyrolactone (G9~G12). Among them, one γ-butyrolactone is new compound (G9). The bioactivities of these isolates are under investigation.
目次 Table of Contents
Content
審定書 i
謝誌 ii
摘要 iii
Abstract iv
Content viii
List of Figures xii
List of Tables xxii
List of Abbreviations and Symbols xxiv
CHAPTER ONE Introduction and Background 1
1-1. Antibiotics 1
1-1-1. Antibiotics Definition 1
1-1-2. Antibiotics Function 2
1-1-3. Antibiotics History 2
1-1-4. Antibiotics Types 3
1-2. Marine Bacteria 4
1-3. Streptomyces spp. 5
1-4. Candida albicans 8
1-5. Mass Spectral Molecular Networking 12
1-6. Objectives 13
CHAPTER TWO Experimental Procedure 14
2-1. Experiment Methods 14
2-2. Marine Bacterium 16
2-2-1. Collection and Purification 16
2-2-2. Literature Review about Streptomyces albogriseolus. 17
2-2-3. Literature Review about Streptomyces gougerotii. 21
2-2-4. The Crude Extract Curve and Bioactivity of Marine Bacteria 21
2-3. Extraction, Isolation and Purification 23
2-3-1. Streptomyces albogriseolus Strain LQ-II 23
2-3-2. Streptomyces gougerotii Strain GT 30
CHAPTER THREE Resulted and Discussion 36
3-1. Structural Elucidation of Isolates from Strain LQ-II 36
Cyclo (L-Pro-L-Leu) (L1) 36
Cyclo (4-trans-hydroxy-L-Pro-L-Leu) (L2) 41
Cyclo (4-trans-hydroxy-D-Pro-D-Leu) (L3) 48
Cyclo (D-Pro-L-Phe) (L4) 56
Cyclo (L-Pro-L-Phe) (L5) 61
Cyclo (4-trans-hydroxy-D-Pro-L-Phe) (L6) 70
Valinomycin (L7) 76
Homononactinic acid (L8) 86
7α-Acetoxy-3α,12α-dihydroxy-5β-cholanoic acid (also name cholic acid, 7-acetate) (L9) 94
N-Acetyl-β-oxotryptamine (L10) 103
Bis (2-ethylhexyl) terephthalate (L11) 109
Uracil (L12) 116
3-2. Structural Elucidation of Isolates from Strain GT 120
Cyclo (Gly-L-Pro) (G1) 120
Cyclo (Val-Leu) (G2) 126
Cyclo (6-hydroxy-Pro-D-Leu) (G3) 132
Cyclo (6-hydroxy-Pro-D-Leu) (G4) 138
Cyclo (Gly-L-Phe) (G5) 147
Cyclo (L-Phe-L-Ala) (G6) 153
Cyclo (4-trans-hydroxy-L-Pro-L-Phe) (G7) 160
Cyclo (Tyr-Phe) (G8) 167
(4S),(10R)-Dihydroxy-11-methyl-dodec-2-en-1,4-olide (G9) 174
(4S),10-Dihydroxy-10-methyl-undec-2-en-1,4-olide (G10) 184
(4S),10-Dihydroxy-10-methyl-dodec-2-en-1,4-olide (G11) 192
(4S)-Hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (G12) 200
9-Fluorenone (G13) 208
ortho-Acetamidobenzamide (G14) 214
3-3. Literature Review about Diketopiperazine 221
3-3-1. Comparion with the 13C and 1H-NMR data of Didetopiperazine with D- and/or L-forms 221
3-3-2. Comparison with the Specific Rotation of Didetopiperazine with D- and/or L-form 230
3-4. Mass Information of Secondary Metabolites from Streptomyces spp. 232
3-4-1. LC-MS/MS 232
3-4-2. Mass Spectral Molecular Networking 234
3-5. Bioactivity 235
3-5-1. Anti-microbial Activity 235
3-5-2. Anti-HCV and Anti-DENV Activities 236
CHAPTER FOUR Conclusion 239
CHAPTER FIVE Materials and Methods 241
5-1. Materials 241
5-1-1. Medium for Streptomyces spp. 241
5-1-2. Medium for Candida albicans 242
5-1-3. Medium for Lactobaillus jensenii 243
5-1-4. Other Media 243
5-2. General Experimental Procedures 244
5-3. Separation Flowchart of Marine Bacteria 246
5-4. Bioactivities 251
5-4-1. Paper Disc Agar Diffusion Assay Method 1 251
5-4-2. Paper Disc Agar Diffusion Assay Method 2 251
5-4-3. Punching-plate Assay Method 1 252
5-4-4. Punching-plate Assay Method 2 252
5-4-5. Lactate Assay 253
5-4-6. Minimum Inhibitory Concentration (MIC) Assay 253
5-4-7. Antivirus Assays 255
5-5. Chemical Examination 257
5-5-1. Modified Mosher’s Method 257
CHAPTER SIX References 258
CHAPTER SEVEN Physical, Chemical and Spectral Data 267
參考文獻 References
References
1. Davies, J., Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 2006, 33, 496-469.
2. Waksman, S. A., What is an antibiotic or an antibiotic substance? Mycologia. 1947, 39, 565-569.
3. Boots, M. R., Antibiotics: An introduction. By Roland Reiner. Thieme-Stratton Inc., 381 Park Avenue South, New York, NY 10016. 1982. 172 pp. 12 × 19 cm. Price $9.95. J. Pharm. Sci. 1984, 73, 572-573.
4. Dias, D. A.; Urban, S.; Roessner, U., A Historical Overview of Natural Products in Drug Discovery. Metabolites. 2012, 2, 303-336.
5. Selwyn, S., Pioneer work on the ‘penicillin phenomenon’, 1870–1876. J. Antimicrob.Chemoth. 1979, 5, 249-255.
6. Cao, M.; Wang, T.; Ye, R.; Helmann, J. D., Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis W and M regulons. Mol. Microbiol. 2002, 45, 1267-1276.
7. Florey, H. W., Steps Leading to the Therapeutic Application of Microbial Antagonisms. Brit. Med. Bull. 1946, 4, 248-258.
8. Lewis, I. M., Bacterial Antagonism with Special Reference to the Effect of Pseudomonas Fluorescens on Spore Forming Bacteria of Soils. J. Bacteriol. 1929, 17, 89-103.
9. Drews, J., Drug Discovery: A Historical Perspective. Science. 2000, 287, 1960-1964.
10. Acred, P.; Brown, D. M.; Turner, D. H.; Wilson, M. J., Pharmacology and chemotherapy of ampicillin--a new broad-spectrum penicillin. Br. J. Pharmacol. Chemother. 1962, 18, 356-369.
11. Enright, M. C.; Robinson, D. A.; Randle, G.; Feil, E. J.; Grundmann, H.; Spratt, B. G., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). P. Natl. Acad Sci-Biol. 2002, 99, 7687-7692.
12. Hebeisen, P.; Heinze-Krauss, I.; Angehrn, P.; Hohl, P.; Page, M. G. P.; Then, R. L., In Vitro and In Vivo Properties of Ro 63-9141, a Novel Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococci. Antimicrob. Agents. Ch. 2001, 45, 825-836.
13. McChesney, E. W.; Froelich, E. J.; Lesher, G. Y.; Crain, A. V. R.; Rosi, D., Absorption, excretion, and metabolism of a new antibacterial agent, nalidixic acid. Toxicol. Appl. Pharm. 1964, 6, 292-309.
14. Chopra, I.; Hawkey, P. M.; Hinton, M., Tetracyclines, molecular and clinical aspects. J. Antimicrob. Chemoth. 1992, 29, 245-277.
15. Weber, F. H., Jr.; Richards, R. D.; McCallum, R. W., Erythromycin: a motilin agonist and gastrointestinal prokinetic agent. Am. J. Gastroenterol. 1993, 88, 485-490.
16. Schatz, A.; Bugle, E.; Waksman, S. A., Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria. Exp. Biol. Medicine. 1944, 55, 66-69.
17. Davidson, R. N.; den Boer, M.; Ritmeijer, K., Paromomycin. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 653-660.
18. Ozanne, B.; Benveniste, R.; Tipper, D.; Davies, J., Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J. Bacteriol. 1969, 100, 1144-1146.
19. Rosenfeld, W. D.; Zobell, C. E., Antibiotic Production by Marine Microorganisms. J. Bacteriol. 1947, 54, 393-398.
20. Blunt, J. W.; Copp, B. R.; Hu, W.-P.; Munro, M. H. G.; Northcote, P. T.; Prinsep, M. R., Marine natural products. Na.t Prod. Rep. 2009, 26, 170-244.
21. Olano, C.; Mendez, C.; Salas, J. A., Antitumor compounds from marine actinomycetes. Mar. Drugs. 2009, 7, 210-248.
22. Li, S.-M.; Hennig, S.; Heide, L., Biosynthesis of the dimethylallyl moiety of novobiocin via a non-mevalonate pathway. Tetrahedron. Lett. 1998, 39, 2717-2720.
23. Standiford, H. C.; Walsh, T. J.; Drusano, G. L.; Tatem, B. A.; Townsend, R. J., Serum inhibitory and bactericidal activity against methicillin-resistant Staphylococcus aureus in volunteers receiving novobiocin and rifampin alone and in combination. Diagn. Microbiol. Infect. Dis. 1993, 17, 135-142.
24. Walsh, T. J.; Hansen, S. L.; Tatem, B. A.; Auger, F.; Standiford, H. C., Activity of novobiocin against methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1985, 15, 435-440.
25. Asolkar, R. N.; Jensen, P. R.; Kauffman, C. A.; Fenical, W., Daryamides A-C, weakly cytotoxic polyketides from a marine-derived actinomycete of the genus Streptomyces strain CNQ-085. J. Nat. Prod. 2006, 69, 1756-1759.
26. Liu, W.-T.; Ng, J.; Meluzzi, D.; Bandeira, N.; Gutierrez, M.; Simmons, T. L.; Schultz, A. W.; Linington, R. G.; Moore, B. S.; Gerwick, W. H.; Pevzner, P. A.; Dorrestein, P. C., Interpretation of Tandem Mass Spectra Obtained from Cyclic Nonribosomal Peptides. Anal. Chem. 2009, 81, 4200-4209.
27. Schmitt, E. K.; Riwanto, M.; Sambandamurthy, V.; Roggo, S.; Miault, C.; Zwingelstein, C.; Krastel, P.; Noble, C.; Beer, D.; Rao, S. P.; Au, M.; Niyomrattanakit, P.; Lim, V.; Zheng, J.; Jeffery, D.; Pethe, K.; Camacho, L. R., The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. Angew. Chem. Int. Ed. Engl. 2011, 50, 5889-5891.
28. Abdelmohsen, U. R.; Zhang, G.; Philippe, A.; Schmitz, W.; Pimentel-Elardo, S. M.; Hertlein-Amslinger, B.; Hentschel, U.; Bringmann, G., Cyclodysidins A–D, cyclic lipopeptides from the marine sponge-derived Streptomyces strain RV15. Tetrahedron. Lett. 2012, 53, 23-29.
29. Brockmann, H.; Schmidt-Kastner, G., Valinomycin I, XXVII. Mitteil. über Antibiotica aus Actinomyceten. Chem. Ber. 1955, 88, 57-61.
30. Brunhofer, G.; Fallarero, A.; Karlsson, D.; Batista-Gonzalez, A.; Shinde, P.; Gopi Mohan, C.; Vuorela, P., Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: The case of chelerythrine. Bioorgan. Med. Chem. 2012, 20, 6669-6679.
31. Adinarayana, G.; Venkateshan, M. R.; Bapiraju, V. V. S. N. K.; Sujatha, P.; Premkumar, J.; Ellaiah, P.; Zeeck, A., Cytotoxic compounds from the marine actinobacterium Streptomyces corchorusii AUBN1/71. Russ. J. Bioorg. Chem. 2006, 32, 295-300.
32. Goo, Y. M.; Lee, Y. Y.; Kim, B. T., A new 16-membered chalcomycin type macrolide antibiotic, 250-144C. J. Antibiot. (Tokyo) 1997, 50, 85-88.
33. Pimentel-Elardo, S. M.; Buback, V.; Gulder, T. A.; Bugni, T. S.; Reppart, J.; Bringmann, G.; Ireland, C. M.; Schirmeister, T.; Hentschel, U., New tetromycin derivatives with anti-trypanosomal and protease inhibitory activities. Mar. Drugs. 2011, 9, 1682-1697.
34. Watts, C. J.; Wagner, D. K.; Sohnle, P. G., Fungal Infections, Cutaneous. In Encyclopedia of Microbiology (Third Edition), Editor-in-Chief: Moselio, S., Ed. Academic Press: Oxford, 2009; pp 382-388.
35. McCullough, M. J.; Ross, B. C.; Reade, P. C., Candida albicans: a review of its history, taxonomy, epidemiology, virulence attributes, and methods of strain differentiation. Int. J. Ora. Maxillofac. Surg. 1996, 25, 136-144.
36. Sánchez–Portocarrero, J.; Pérez–Cecilia, E.; Corral, O.; Romero–Vivas, J.; Picazo, J. J., The central nervous system and infection by Candida species. Diagn. Micr. InfecDis. 2000, 37, 169-179.
37. Yan, L.; Yang, C.; Tang, J., Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res. 2013, 168, 389-395.
38. Nair, M. G.; Chandra, A.; Thorogood, D. L.; Ammermann, E.; Walker, N.; Kiehs, K., Gopalamicin, an Antifungal Macrodiolide Produced by Soil Actinomycetes. J. Agr. Food. Chem. 1994, 42, 2308-2310.
39. Kim, D.-G.; Moon, K.; Kim, S.-H.; Park, S.-H.; Park, S.; Lee, S. K.; Oh, K.-B.; Shin, J.; Oh, D.-C., Bahamaolides A and B, Antifungal Polyene Polyol Macrolides from the Marine Actinomycete Streptomyces sp. J. Nat. Prod. 2012, 75, 959-967.
40. Ryu, G.; Choi, W.-C.; Hwang, S.; Yeo, W.-H.; Lee, C.-S.; Kim, S.-K., Tetrin C, a New Glycosylated Polyene Macrolide Antibiotic Produced by Streptomyces sp. GK9244. J. Nat. Prod. 1999, 62, 917-919.
41. Cai, P.; Kong, F.; Ruppen, M. E.; Glasier, G.; Carter, G. T., Hygrocins A and B, Naphthoquinone Macrolides from Streptomyces hygroscopicus. J. Nat. Prod. 2005, 68, 1736-1742.
42. M. McNamara, C.; Box, S.; M. Crawforth, J.; S. Hickman, B.; J. Norwood, T.; J. Rawlings, B., Biosynthesis of amphotericin B. J. Chem. Soc., Perkin. Transactions. 1998, 83-88.
43. Oh, D.-C.; Poulsen, M.; Currie, C. R.; Clardy, J., Sceliphrolactam, a Polyene Macrocyclic Lactam from a Wasp-Associated Streptomyces sp. Org. Lett. 2011, 13, 752-755.
44. Helaly, S. E.; Kulik, A.; Zinecker, H.; Ramachandaran, K.; Tan, G. Y. A.; Imhoff, J. F.; Süssmuth, R. D.; Fiedler, H.-P.; Sabaratnam, V., Langkolide, a 32-Membered Macrolactone Antibiotic Produced by Streptomyces sp. Acta 3062. J. Nat. Prod. 2012, 75, 1018-1024.
45. Li, F.; Maskey, R. P.; Qin, S.; Sattler, I.; Fiebig, H. H.; Maier, A.; Zeeck, A.; Laatsch, H., Chinikomycins A and B:  Isolation, Structure Elucidation, and Biological Activity of Novel Antibiotics from a Marine Streptomyces sp. Isolate M045#,1. J. Nat. Prod. 2005, 68, 349-353.
46. Fotso, S.; Santosa, D. A.; Saraswati, R.; Yang, J.; Mahmud, T.; Zabriskie, T. M.; Proteau, P. J., Modified Phenazines from an Indonesian Streptomyces sp. J. Nat. Prod. 2010, 73, 472-475.
47. Fernandes, R. A.; Chowdhury, A. K., Total Syntheses of All Stereoisomers of Phenatic Acid B. J. Org. Chem. 2009, 74, 8826-8829.
48. Barrett, A. G. M.; Lebold, S. A., Applications of crotyldiisopinocampheylboranes in synthesis: the total synthesis of nikkomycin B. J. Org. Chem. 1991, 56, 4875-4884.
49. Park, H. J.; Lee, J. Y.; Hwang, I. S.; Yun, B. S.; Kim, B. S.; Hwang, B. K., Isolation and Antifungal and Antioomycete Activities of Staurosporine from Streptomyces roseoflavus Strain LS-A24. J. Agr. Food. Chem. 2006, 54, 3041-3046.
50. Wohlert, S.-E.; Wendt-Pienkowski, E.; Bao, W.; Hutchinson, C. R., Production of Aromatic Minimal Polyketides by the Daunorubicin Polyketide Synthase Genes Reveals the Incompatibility of the Heterologous DpsY and JadI Cyclases. J. Nat. Prod. 2001, 64, 1077-1080.
51. Ding, L.; Ndejouong, B. L. S. T.; Maier, A.; Fiebig, H.-H.; Hertweck, C., Elaiomycins D–F, Antimicrobial and Cytotoxic Azoxides from Streptomyces sp. Strain HKI0708. J. Nat. Prod. 2012, 75, 1729-1734.
52. Holtzel, A.; Kempter, C.; Metzger, J. W.; Jung, G.; Groth, I.; Fritz, T.; Fiedler, H. P., Spirofungin, a new antifungal antibiotic from Streptomyces violaceusniger Tu 4113. J. Antibiot. (Tokyo) 1998, 51, 699-707.
53. Moon, K.; Ahn, C. H.; Shin, Y.; Won, T. H.; Ko, K.; Lee, S. K.; Oh, K. B.; Shin, J.; Nam, S. I.; Oh, D. C., New benzoxazine secondary metabolites from an arctic actinomycete. Mar. Drugs. 2014, 12, 2526-2538.
54. Guthals, A.; Watrous, J. D.; Dorrestein, P. C.; Bandeira, N., The spectral networks paradigm in high throughput mass spectrometry. Mol. Biosyst. 2012, 8, 2535-2544.
55. Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B. S.; Yang, J. Y.; Kersten, R. D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J. M.; Moore, B. S.; Laskin, J.; Bandeira, N.; Dorrestein, P. C., Mass spectral molecular networking of living microbial colonies. Proc. Nat. Acad. Sci. U S A 2012, 109, E1743-52.
56. Stritzke, K.; Schulz, S.; Laatsch, H.; Helmke, E.; Beil, W., Novel caprolactones from a marine streptomycete. J. Nat. Prod. 2004, 67, 395-401.
57. Kanbe, K.; Okamura, M.; Hattori, S.; Naganawa, H.; Hamada, M.; Okami, Y.; Takeuchi, T., Thienodolin, a New Plant Growth-regulating Substance Produced by a Streptomycete Strain: I. Taxonomy and Fermentation of the Producing Strain, and the Isolation and Characterization of Thienodolin. Biosci. Biotech. Bioch. 1993, 57, 632-635.
58. Cui, C. B.; Liu, H. B.; Gu, J. Y.; Gu, Q. Q.; Cai, B.; Zhang, D. Y.; Zhu, T. J., Echinosporins as new cell cycle inhibitors and apoptosis inducers from marine-derived Streptomyces albogriseolus. Fitoterapia. 2007, 78, 238-240.
59. Li, X. L.; Xu, M. J.; Zhao, Y. L.; Xu, J., A novel benzo[f][1,7]naphthyridine produced by Streptomyces albogriseolus from mangrove sediments. Molecules. 2010, 15, 9298-9307.
60. Zeng, Q.; Huang, H.; Zhu, J.; Fang, Z.; Sun, Q.; Bao, S., A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie. Van. Leeuwenhoek. 2013, 103, 1107-1111.
61. Dolak, L., The carbon-13 NMR spectrum of gougerotin. J. Antibiot. (Tokyo) 1979, 32, 1346-1347.
62. Furukawa, T.; Akutagawa, T.; Funatani, H.; Uchida, T.; Hotta, Y.; Niwa, M.; Takaya, Y., Cyclic dipeptides exhibit potency for scavenging radicals. Bioorgan. Med. Chem. 2012, 20, 2002-2009.
63. Ienaga, K.; Nakamura, K.; Goto, T., Bioactive compounds produced in animal tissues (I); two diketopiperadine plant growth regulators containing hydroxyproline isolated from rabbit skin tissue extract. Tetrahedron. Lett. 1987, 28, 1285-1286.
64. Gao, C.; Lin, L.; Long, B.; Chen, Y.; He, B.; Sun, H.; Huang, R., A new diketopiperazine from the gorgonian coral Menella kanisa. Nat. Prod. Res. 2014, 28, 473-476.
65. Fdhila, F.; Vázquez, V.; Sánchez, J. L.; Riguera, R., dd-Diketopiperazines:  Antibiotics Active against Vibrio anguillarum Isolated from Marine Bacteria Associated with Cultures of Pecten maximus. J. Nat. Prod. 2003, 66, 1299-1301.
66. Hellwig, V.; Dasenbrock, J.; Schumann, S.; Steglich, W.; Leonhardt, K.; Anke, T., New Triquinane-Type Sesquiterpenoids from Macrocystidia cucumis (Basidiomycetes). European J. Org. Chem. 1998, 1998, 73-79.
67. Yang, Z.; Yang, Y.; Yang, X.; Zhang, Y.; Zhao, L.; Xu, L.; Ding, Z., Sesquiterpenes from the secondary metabolites of Streptomyces sp. (YIM 56130). Chem. Pharm. Bull. (Tokyo) 2011, 59, 1430-1433.
68. Kenji, K.; Katsutoshi, F.; Taiju, K.; Masaru, K.; Jiro, F.; Mitsuhiro, O.; Takahiko, H., Identification of (23S)-5α-cholestane-3α,7α,12α,23,25-pentol in urine of patients with cerebrotendinous xanthomatosis. Steroids 1991, 56, 464-468.
69. Martinez-Luis, S.; Gomez, J. F.; Spadafora, C.; Guzman, H. M.; Gutierrez, M., Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules. 2012, 17, 11146-1155.
70. Zhang, C.-R.; Aldosari, S. A.; Vidyasagar, P. S. P. V.; Nair, K. M.; Nair, M. G., Antioxidant and Anti-inflammatory Assays Confirm Bioactive Compounds in Ajwa Date Fruit. J. Agr. Food Chem. 2013, 61, 5834-5840.
71. Karplus, M., Vicinal Proton Coupling in Nuclear Magnetic Resonance. J. Amer. Chem. Soci. 1963, 85, 2870-2871.
72. Kan, S.; Chen, G.; Han, C.; Chen, Z.; Song, X.; Ren, M.; Jiang, H., Chemical constituents from the roots of Xanthium sibiricum. Nat. Prod. Res. 2011, 25, 1243-1249.
73. Mitova, M.; Popov, S.; De Rosa, S., Cyclic Peptides from a Ruegeria Strain of Bacteria Associated with the Sponge Suberites domuncula. J. Nat. Prod. 2004, 67, 1178-1181.
74. Tian, S.-Z.; Pu, X.; Luo, G.; Zhao, L.-X.; Xu, L.-H.; Li, W.-J.; Luo, Y., Isolation and Characterization of New p-Terphenyls with Antifungal, Antibacterial, and Antioxidant Activities from Halophilic Actinomycete Nocardiopsis gilva YIM 90087. J. Agr. Food. Chem. 2013, 61, 3006-3012.
75. Li, B.; Chen, G.; Bai, J.; Jing, Y.-K.; Pei, Y.-H., A bisamide and four diketopiperazines from a marine-derived Streptomyces sp. J. Asian Nat. Prod. Res. 2011, 13, 1146-1150.
76. Nishanth, S. K.; Nambisan, B.; Dileep, C., Three bioactive cyclic dipeptides from the Bacillus sp. N strain associated with entomopathogenic nematode. Peptides 2014, 53, 59-69.
77. Zhuravleva, O. I.; Leshchenko, E. V.; Afiyatullov, S. S.; Sobolevskaya, M. P.; Denisenko, V. A.; Shevchenko, L. S., Metabolites from the marine actinobacterium Streptomyces sp. KMM 7210. Chem. Nat. Compd. 2011, 47, 494-495.
78. Adamczeski, M.; Quinoa, E.; Crews, P., Novel sponge-derived amino acids. 5. Structures, stereochemistry, and synthesis of several new heterocycles. J. American Chem. Soci. 1989, 111, 647-654.
79. Lu, X.; Shen, Y.; Zhu, Y.; Xu, Q.; Liu, X.; Ni, K.; Cao, X.; Zhang, W.; Jiao, B., Diketopiperazine constituents of marine Bacillus subtilis. Chem. Nat. Compd. 2009, 45, 290-292.
80. Gawronski, J.; Wu, Y. C., A note on the determination of absolute configuration of acetogenins by circular dichroism. Polish. J. Chem. 1999, 73, 241-243.
81. Cho, K. W.; Lee, H.-S.; Rho, J.-R.; Kim, T. S.; Mo, S. J.; Shin, J., New Lactone-Containing Metabolites from a Marine-Derived Bacterium of the Genus Streptomyces. J. Nat. Prod. 2001, 64, 664-667.
82. Vatulina, G. G.; Bol'shakova, S. A.; Tuzhilkova, T. I.; Bokova, A. I.; Makhsudova, B.; Khaitbaeva, A. G.; Mukhamedzhanov, S. Z., The search for radioprotectors among ketocompounds. Pharm. Chem. J. 1985, 19, 326-330.
83. Szafran, M.; Brycki, B.; Dega-Szafran, Z.; Nowak-Wydra, B., Differentiation of substituent effects from hydrogen bonding and protonation effects in carbon-13 NMR spectra of pyridine N-oxides. J. Chem. Soc., Perkin Transactions 2 1991, 1161-1166.
84. Onuki, H.; Miyashige, H.; Hasegawa, H.; Yamashita, S., NI15501A, a novel anthranilamide derivative from a marine fungus Penicillium sp. J. Antibiot. (Tokyo) 1998, 51, 42-444.
85. Varga-Defterdarović, L.; Hrlec, G., Synthesis and intramolecular reactions of Tyr-Gly and Tyr-Gly-Gly related 6-O-glucopyranose esters. Carbohyd. Res. 2004, 339, 67-75.
86. Woodard, R. W., Stereochemistry of cyclic dipeptides. Assignment of the prochiral methylenes of 1-aminocyclopropane-1-carboxylic acid. J. Org. Chem. 1985, 50, 4796-4799.
87. Stark, T.; Hofmann, T., Structures, Sensory Activity, and Dose/Response Functions of 2,5-Diketopiperazines in Roasted Cocoa Nibs (Theobroma cacao). J. Agr. Food. Chem. 2005, 53, 7222-7231.
88. Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J., Cyclo(d-Tyr-d-Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J. Pept. Sci. 2014, 20, 173-185.
89. Huang, R. M.; Ma, W.; Dong, J. D.; Zhou, X. F.; Xu, T.; Lee, K. J.; Yang, X.; Xu, S. H.; Liu, Y., A new 1,4-diazepine from South China Sea marine sponge Callyspongia species. Molecules 2010, 15, 871-877.
90. Wang, G.; Dai, S.; Chen, M.; Wu, H.; Xie, L.; Luo, X.; Li, X., Two diketopiperazine cyclo(pro-phe) isomers from marine bacteria Bacillus subtilis sp. 13-2. Chem. Nat. Compd. 2010, 46, 583-585.
91. Šavrda, J.; Chertanova, L.; Wakselman, M., Activation of N,N-bis(alkoxycarbonyl) amino acids. Synthesis of N-alkoxycarbonyl amino acid N-carboxyanhydrides and N,N-dialkoxycarbonyl amino acid fluorides, and the behavior of these amino acid derivatives. Tetrahedron 1994, 50, 5309-5322.
92. Wang, L.; Zheng, C.-D.; Li, X.-J.; Gao, J.-M.; Zhang, X.-C.; Wei, G.-H., Cyclo(PRO-TYR) from an endophytic rhizobium isolated from Glycyrrhiza uralensis. Chem. Nat. Compd. 2012, 47, 1040-1042.
93. Sajeli Begum, A.; Basha, S. A.; Raghavendra, G.; Kumar, M. V. N.; Singh, Y.; Patil, J. V.; Tanemura, Y.; Fujimoto, Y., Isolation and Characterization of Antimicrobial Cyclic Dipeptides from Pseudomonas fluorescens and Their Efficacy on Sorghum Grain Mold Fungi. Chem. Biodivers. 2014, 11, 92-100.
94. Shigemori, H.; Tenma, M.; Shimazaki, K.; Kobayashi, J. i., Three New Metabolites from the Marine Yeast Aureobasidium pullulans. J. Nat. Prod. 1998, 61, 696-698.
95. Suzuki, K.; Takenaka, H., The role of investment for energy conservation: Future Japanese economic growth. Energy. Economics. 1981, 3, 233-243.
96. M. Lenman, M.; Lewis, A.; Gani, D., Synthesis of fused 1,2,5-triazepine-1,5-diones and some N2- and N3-substituted derivatives: potential conformational mimetics for cis-peptidyl prolinamides 1. J. Chem. Soci., Perkin Transactions 1 1997, 2297-2312.
97. Ding, G.-Z.; Liu, J.; Wang, J.-M.; Fang, L.; Yu, S.-S., Secondary metabolites from the endophytic fungi Penicillium polonicum and Aspergillus fumigatus. J. Asian Nat. Prod. Res. 2013, 15, 446-452.
98. Raahave, D., Paper disk-agar diffusion assay of penicillin in the presence of streptomycin. Antimicrob. Agents. Chemother. 1974, 6, 603-605.
99. De Beer, E. J.; Sherwood, M. B., The Paper-Disc Agar-Plate Method for the Assay of Antibiotic Substances. J. Bacteriol. 1945, 50, 459-467.
100. Humphrey, J. H.; Lightbown, J. W., A general theory for plate assay of antibiotics with some practical applications. J. Gen. Microbiol. 1952, 7, 129-143.
101. Pfaller, M. A.; Diekema, D. J., Progress in antifungal susceptibility testing of Candida spp. by use of Clinical and Laboratory Standards Institute broth microdilution methods, 2010 to 2012. J. Clin. Microbiol. 2012, 50, 2846-2856.
102. Andrews, J. M., Determination of minimum inhibitory concentrations. J. Antimicrob. Chemoth. 2001, 48, 5-16.
103. Wiegand, I.; Hilpert, K.; Hancock, R. E., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163-175.
104. Peng, H.-K.; Chen, W.-C.; Lee, J.-C.; Yang, S.-Y.; Tzeng, C.-C.; Lin, Y.-T.; Yang, S.-C., Novel anilinocoumarin derivatives as agents against hepatitis C virus by the induction of IFN-mediated antiviral responses. Org. Biomol. Chem. 2013, 11, 1858-1866.
105. Luesch, H.; Williams, P. G.; Yoshida, W. Y.; Moore, R. E.; Paul, V. J., Ulongamides A-F, new beta-amino acid-containing cyclodepsipeptides from Palauan collections of the marine cyanobacterium Lyngbya sp. J. Nat. Prod. 2002, 65, 996-1000.
106. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H., High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. J. American. Chem. Soci. 1991, 113, 4092-4096.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code