Responsive image
博碩士論文 etd-0809115-042452 詳細資訊
Title page for etd-0809115-042452
論文名稱
Title
以氬氣輔助常壓化學氣相沉積法成長石墨烯於多晶銅箔及其電性量測
Argon assisted epitaxial growth of graphene on polycrystalline Cu foil by atmospheric pressure chemical vapor deposition and its electrical properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-18
繳交日期
Date of Submission
2015-09-09
關鍵字
Keywords
蕭特基二極體、石墨烯、常壓化學氣相沉積法
Graphene, APCVD, Schottky diode
統計
Statistics
本論文已被瀏覽 5769 次,被下載 0
The thesis/dissertation has been browsed 5769 times, has been downloaded 0 times.
中文摘要
摘要
石墨烯是一種由碳原子以sp2混成軌域組成六角型呈蜂巢晶格的平面薄膜,只有一個碳原子厚度約0.3奈米的二維材料,自從2004年英國曼徹斯特大學K. S. Novoselov 和 A. K. Geim發現後,它顯示了各種迷人的物理性質、化學性質,例如常溫量子霍爾效應、高電子遷移率、高透光率、低電阻…等。
因為這些迷人的材料特性使得石墨烯有許多的應用,例如透明導電膜、儲能材料、化學感測器、高分子複合材料…等
在這次報告中首先探討了以多晶銅箔,在一大氣壓環境下利用常壓化學氣相沉積法在銅箔上沉積石墨烯。有別於以往需要使用大量的氫氣生長,我們改以大量的氬氣輔助生長石墨稀薄膜以降低氫氣的使用量。因為氫氣是極易燃的氣體所以在高溫生長石墨烯有安全的疑慮,再者氬氣的成本也比氫氣便宜,故使用大量輔助生長有安全及降低成本好處。我們也發現使用氬氣生長的石墨烯比沒有氬氣輔助生長的石墨烯在原子力顯微鏡(AFM)下,有氬氣輔助的石墨烯粗糙度有顯著的降低。而在有氬氣輔助下,生長石墨須所需要的甲烷氣體也可以再降流量生長出石墨烯薄膜。
生長石墨烯後我們已拉曼光譜法分析石墨烯的品質,並將銅箔上的石墨烯以銅蝕刻液蝕刻銅箔後轉移到玻璃基板,並量測石墨烯的透光率以及面電阻。利用光學的穿透率來判定石墨烯的厚度較拉曼光譜法還要精確,我們利用不同穿透率的石墨烯量測在氣體環境下的電性變化,並利用拉曼光譜來檢測石墨烯的缺陷程度。並量測其霍爾效應觀察變化。
利用氮氣與硼矽薄膜、鋁來對石墨烯摻雜並且放在矽基板上作為蕭特基二極體,並由電流-電壓的關係圖來計算二極體的理想因子。

關鍵詞:石墨烯、常壓化學氣相沉積法、蕭特基二極體
Abstract
Abstract:
Graphene, an allotrope of carbon, built from monolayer sp2-bonded carbon atoms as a honeycomb crystal lattice. Since graphene was reported in 2004 from University of Manchester, it has been attracting increasing interest because of its unique physical properties, such as 15000 cm2/V·s high mobility1 and about 98% transmission of single layer graphene. This study reports a type of using atmospheric pressure chemical vapor deposition (APCVD) to synthesis graphene. And add argon to be the carrier gas observed how different with no carrier gas at Raman data, optic and it quality. Used different method to doping graphene, that its change be n or p type. Measure its electrical properties. Transfer graphene to n or p type silicon be Graphene-Silicon Schottky Diodes and measured its I-V curve then fitting ideality factor of Graphene-Silicon Schottky Diodes.

Keyword:Graphene, APCVD, Schottky diode
目次 Table of Contents
目 錄
論文審定書 i
中文摘要 ii
英文摘要 iii

第一章 緒論 1
第二章 文獻回顧 2
2.1石墨烯的結構與基本特性 2
2.2石墨烯的製備方法 5
2.2.1 膠帶剝離法 5
2.2.2 碳化矽熱裂解法 6
2.2.3 化學氣相沉積法 7
2.2.4氧化石墨烯 9
2.2.5不同石墨烯製備方法的比較 9
2.3 石墨烯的量測方式 10
2.3.1光波的干涉效應判別石墨烯層數 10
2.3.3 穿透率判定石墨烯層數 13
2.4 石墨烯之摻雜與蕭特基接觸 13
2.4.1 石墨烯氣體吸附引響 13
2.4.2 石墨烯p型摻雜 14
2.4.3 石墨烯n型摻雜 16
2.4.4石墨烯與矽基板蕭特基接觸 17
2.5石墨烯材料前瞻性 20
第三章 實驗儀器與原理介紹 25
3.1 製程儀器 25
3.1.1 高溫管狀爐系統(High Temperature Tube Furnace) 25
3.2.1 微拉曼光譜儀(Micro-Raman) 26
3.2.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 27
3.2.3原子力顯微鏡(Atomic Force Microscope, AFM) 31
3.2.5 吸收光譜儀(ABS system) 32
第四章 實驗與結果討論 33
4.1 化學氣相沉積法 33
4.2 以常壓化學氣相沉積法於多晶銅箔上沉積石墨烯 35
4.3 光學穿透法量測石墨烯層數 38
4.4 氬氣輔助生長石墨烯 42
4.4.1 以原子力顯微鏡觀測石墨烯 45
4.5 降低石墨烯的生長間和甲烷流量 50
4.6 石墨烯的霍爾量測 58
4.7 石墨烯電子與電洞摻雜 65
4.8石墨烯蕭特基二極體 70
第五章 結論 78
參考資料 79
附錄-樣品清單 83
參考文獻 References
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric Field Effect in Atomically Thin Carbon Films ”, Science, 306, 666-669, 2004
[2] A. K. Geim, and K. S. Novoselov, “ The rise of graphene ”, Nature Materials, 6, 183-191, 2007
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “ Two-dimensional gas of massless Dirac fermions in graphene ”, Nature, 438, 197-200, 2005
[4] Yu-Ming Lin, keith A. Jenkins, Alberto Valdes-Garcia, Joshua P. Small, Damon B. Farmer, and Phasedon Avouris, “ Operation of Graphene Transistors at Gigahertz Frequencies ”, Nano Lett, 9, 422-426, 2009
[5] Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, and James Hone, “ Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene ”, Science, 321, 385-388, 2008
[6] Peter Blake, Paul D. Brimicombe, Rahul R. Nair, Tim J. Booth, Da Jiang, Fred Schedin, Leonid A. Ponomarenko, Sergey V. Morozov, Helen F. Gleeson, Ernie W. Hill, Andre K. Geim, and Kostya S. Novoselov, “ Graphene-Based Liquid Crystal Device ”, Nano Lett, 8, 1704-1708, 2008
[7] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney, Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, and Rodney S. Ruoff, “ Graphene-based composite materials ”, Nature, 442, 282-286, 2003
[8] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “ Fine Structure Constant Defines Visual Transparency of Graphene ”, Science, 320, 1308, 2008
[9] 林永昌, 呂俊頡, 鄭碩方, 邱博文, “石墨烯之電子能帶特性與其元件應用”, 物理雙月刊, 33卷, 2期, 191-202頁, 2011
[10] Mark Wilson, “Electrons in Atomically Thin Carbon Sheets Behave like Massless Particles”, Phys. Today, 59, 21-23, 2006
[11] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Cecile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer, “ Electronic Confinement and Coherence in Patterned Epitaxial Graphene ”, Science, 312, 1191-1196, 2006
[12] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, “ Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils ”, Science, 324, 1312-1314, 2009
[13] 蘇清源“石墨烯氧化物之特性與應用前景“物理雙月刊, 33卷, 2期, 145-256頁, 2011
[14] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “ Graphene Thickness Determination Using Reflection and Contrast Spectroscopy ”, Nano Lett., 7, 2758-2763, 2007
[15] L.M. Malarda, M.A. Pimenta a , G. Dresselhaus b , M.S. Dresselhaus “Raman spectroscopy in graphene ”, Physics Reports 473 51–87 ,2009
[16] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen, and Andrew Thye Shen Wee, “ Raman Studies of Monolayer Graphene: The Substrate Effect ”, J. Phys. Chem. C, 112, 10637–10640, 2008
[17] SHOU-EN ZHU, SHENGJUN YUAN and G.C.A.M. JANSSEN “Optical transmittance of multilayer graphene ”, EPL 108 17007 ,2014
[18] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “ Detection of individual gas molecules adsorbed on graphene”, Nat. Mater. 6, 652 2007
[19] Leenaerts, O.; Partoens, B.; Peeters, “Water on graphene: Hydrophobicity and dipole moment using density functional theory” F. Phys. Rev. B 2009, 79, 235440.
[20] H. Medina, Y. C. Lin, and P. W. Chiu, “ Tuning of charge densities in graphene by molecule doping”, Adv. Funct. Mater. 2011
[21] Beidou Guo, Liang Fang, Baohong Zhang, Jian Ru Gong , “Graphene Doping: A Review” Insciences J. 2011, 1(2), 80-89
[22] Dacheng Wei, Yunqi Liu, Yu Wan, Hongliang Zhang, Liping Huang and Gui Yu “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Lett., , 9 (5), pp 1752–1758 2009
[23] Y.C. Lin, C. Y. Lin, and P. W. Chiu, “Controllable graphene N-doping with ammonia plasma”, Appl. Phys. Lett. 96, 133110 2010
[24] Chun-Chung Chen, Mehmet Aykol, Chia-Chi Chang, A. F. J. Levi, and Stephen B. Cronin “Graphene-Silicon Schottky Diodes” Nano Lett., 11, 1863–1867 2011
[25] Hye-Young Kim, Kangho Lee, Niall McEvoy, Chanyoung Yim, and Georg S. Duesberg“Chemically Modulated Graphene Diodes” Nano Lett., 13, 2182−2188 2013
[26] Barbaros O zyilmaz, Jong-Hyun Ahn, Byung Hee Hong and Sumio Iijima Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng,
Jayakumar Balakrishnan, Tian Lei, Hye Ri Kim, Young Il Song, Young-Jin Kim, Kwang S. Kim, and Sumio Iijima “Roll-to-roll production of 30-inch graphene films for transparent electrodes” Nature Nanotechnology 5,574–578 2010
[27] Bando, Masashi; Kimura, Nozomi; Shimizu, Keisuke; Kadono, Koji; Umezu, Nobuhiko; Miyahara, Kazuhiko; Hayazaki, Shinji; Nagai, Sae; Mizuguchi, Yukiko;Murakami, Yosuke; Hobara, Daisuke “Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process” Applied Physics Letters, Volume 102, Issue 2, 023112 2013
[28] intellectual property office 2015/3.
[29] From Wikimedia“Spectroscopy overview zh.svg”
[30] J. D. Plummer, M. D. Deal, and P. B. Griffin, “ Silicon VLSI technology fundamentals, practice and modeling ”, Pearson Education International, 2000
[31] 彭鋐瑀, “ 以碳化矽熱裂解法與化學氣相沉積法製備石墨烯的製程與特性研究 ”, 2010年6月
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.238.143.70
論文開放下載的時間是 校外不公開

Your IP address is 34.238.143.70
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code