Responsive image
博碩士論文 etd-0809116-101221 詳細資訊
Title page for etd-0809116-101221
論文名稱
Title
具有量測三維切割力之晶圓切割設備的研發
Research and Development of Wafer Dicing Equipment with Measuring 3D Dicing Forces
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-09-09
關鍵字
Keywords
崩裂、切割力、矽晶圓、負荷計、磨耗
dicing force, silicon wafer, load cell, chipping, wear
統計
Statistics
本論文已被瀏覽 5712 次,被下載 2
The thesis/dissertation has been browsed 5712 times, has been downloaded 2 times.
中文摘要
晶圓切割技術為晶圓封裝的其中一道步驟,目前所販售的晶圓切割機,皆無切割力之量測系統,無法了解晶圓切割過程所產生的物理現象,本研究自行研製一台具有量測切割時之正向力、切向力及側向力之晶圓切割機,實驗採用日本DISCO公司之鑽石切割刀片,工件材料為裸矽晶圓,探討主軸轉速與進給速率對切割力所造成的影響。從所量測的切割力以及光學顯微鏡觀察刀刃和工件切割表面之結果,探討主軸轉速與進給速率對鑽石切割片的磨損量和填塞現象、以及工件切割表面的損傷型態之影響。
在不同進給速率(30、40、50、60 mm/s)與固定高速主軸轉速(25,000 rpm)的切割參數下,實驗結果顯示隨著進給速率的增加,切割力也隨之增加,最佳的進給速率為40 mm/s,其切割力最小,進給力約為0.277 N,正向力約為1.704 N。另外,在不同高速主軸轉速(15,000、20,000、25,000、30,000 rpm)與固定進給速度(50 mm/s)的切割參數下,結果顯示隨著主軸轉速的增加,切割力也隨之下降,最佳的主軸轉速為30,000 mm/s,其切割力最小,進給力約為0.5 N,正向力約為2 N。本研究所研製的晶圓切割機,可作為產業界研發IC晶圓切割設備以及晶圓切割之參考。
Abstract
Wafer dicing technology is one of the steps in wafer packaging. Currently sold wafer dicing machines have no measurement system of dicing forces, so that they are unable to understand the physical phenomena arising from the wafer dicing process. The present study has developed a dicing machine with the measurement system of dicing forces, including the normal, tangential force, clamping forces. A thin diamond dicing blade made by DISCO Corporation in Japan is used to dice the silicon wafer. The effects of spindle speed and feed speed on the dicing force are investigated. From the measured dicing forces and the observations of optical microscope to understand the effects of rotating speed and feed speed on the worn amount and loading phenomenon on the blade, and the damage type on material surface.
Under different feed speeds (30、40、50、60 mm/s) and a rotating speed of 25,000 rpm, experimental results show that the dicing forces increase along with feed rate. The best feed speed is 40 mm/s, since it has minimal dicing forces, where the feed force is about 0.277 N, and the normal force is approximately 1.704 N. Moreover, under different rotating speeds (15,000、20,000、25,000、30,000 rpm) and a feed speed of 50 mm/s, results show that the dicing forces decrease along with rotating speed. The best rotating speed is 30,000 rpm with minimal dicing forces, where the feed force is about 0.5 N, and the normal force is approximately 2 N. This dicing machine can be used as the reference for the research and development of equipment in dicing IC wafer in industries.
目次 Table of Contents
論文審定書 ....................................................................................................................... i
誌謝 .................................................................................................................................. ii
摘要 ................................................................................................................................. iii
Abstract ............................................................................................................................ iv
目錄 .................................................................................................................................. v
圖目錄 ............................................................................................................................ vii
表目錄 ........................................................................................................................... xiii
第一章 緒論 .................................................................................................................... 1
1.1 研究背景 ............................................................................................................... 1
1.2 文獻回顧 ............................................................................................................... 4
1.2.1 感測計介紹 .................................................................................................... 4
1.2.2 晶圓切割技術演變與介紹 ........................................................................... 11
1.3 研究動機與目的 ................................................................................................. 19
1.4 論文架構 ............................................................................................................. 19
第二章 機台設計與實驗方法 ...................................................................................... 20
2.1 三維切割力之量測系統設計 ............................................................................. 20
2.2 晶圓切割機設計 ................................................................................................. 25
2.2.1 高速主軸與進給裝置 .................................................................................. 26
2.2.2 工件進給裝置 .............................................................................................. 29
2.2.3 模擬靜態之切割力校正實驗裝置 .............................................................. 30
2.2.4 切削液循環系統 .......................................................................................... 31
2.2.5 切削液之選擇 .............................................................................................. 32
2.2.6 工件安裝與切割平台設計 .......................................................................... 33
vi
2.3 實驗前處理方式 ................................................................................................. 35
2.4 實驗後處理方式 ................................................................................................. 37
第三章 實驗結果與討論 .............................................................................................. 38
3.1 負荷計初始校正實驗 .......................................................................................... 38
3.2 模擬靜態之切割力校正實驗 ............................................................................. 41
3.2.1 單向負荷之電壓校正曲線 .......................................................................... 42
3.2.2 雙向負荷之電壓與驗證 .............................................................................. 49
3.2.3 三向負荷之電壓與驗證 .............................................................................. 53
3.2.4 消除干擾方程式 .......................................................................................... 55
3.3 不同慣性矩的側柱對平台微變型之影響 .......................................................... 56
3.4 實際晶圓切割實驗 ............................................................................................. 62
3.4.1 高速主軸轉速之干擾檢測 .......................................................................... 62
3.4.2 工件進給裝置之干擾檢測 .......................................................................... 76
3.4.3 供給切削液之干擾檢測 .............................................................................. 81
3.5 不同進給速度之晶圓切割檢測 ......................................................................... 83
3.6 不同進給速度之晶圓切割檢測 ......................................................................... 93
3.7 刀片磨耗與填塞現象 ....................................................................................... 103
3.8 不同接觸型態之干擾實驗 ............................................................................... 105
第四章 結論與未來展望 ............................................................................................ 107
4.1 結論 ................................................................................................................... 107
4.2 未來展望 ........................................................................................................... 109
參考文獻 ....................................................................................................................... 110
參考文獻 References
[1] A.T. Cheung, “Dicing advanced materials for microelectronics”, in Proc. Int. Symp. Exhibit. Adv. Packag. Materials Processes, Mar. (2005), pp. 149–152
[2] Amri, M.S., Liew, D. and Harun, F., “Chipping free process for combination of narrow saw street (60um) and thick wafer (600um) sawing process”, IEEE/CPMT International, Electronic Manufacturing Technology Symposium (IEMT), Nov. 30 2010 - Dec. 2(2010), pp.1 – 5
[3] 田民波,半導體電子元件構裝技術,初版,五南圖書出版社,臺北、台灣,2005
[4] 張勁燕,半導體製程設備,第四版,五南圖書出版社,臺北、台灣,2009
[5] 小野浩二,磨削加工,理論與應用,槇書店,1964
[6] 洪全一,超硬脆薄板材料最佳切削方式之研究,碩士論文,國立中興大學機械工程研究所,台中、台灣,2003
[7] V. Lindroos et al., Handbook of silicon based MEMS materials and technologies, Elsevier Science (2010)
[8] W.S. Lei, A. Kumar1 and R. Yalamanchili, “Dicing advanced materials for microelectronics”, J. Vac Sci Technol B, 30 (2012), p. 040801
[9] 石川憲一,”Slicing technology of hard and brittle materials: present and future”,日本精密工學會誌60(1994), pp.163-167
[10] J.W. Lin and M.H. Cheng, “Investigation of chipping and wear of silicon wafer dicing”, J. Manuf. Proc. 16(2014), 373–378
[11] S. Takyu, M. Kiritani, T. Kurosawa and N. Shimizu, “Novel flip chip technologies for ultra thin chip,” Electronic Components and Technology Conference (2007), pp.1326-1332
[12] DISCO Co., Solutions report, “薄型晶片的切割技術”,Kiru-Kezuru-Migaku Technologies,日本
[13] 松井正己、庄司克雄、寺 本仁,“Studies on outer-blade slicing (1st Report):Grinding force wheel wear”, 日本機械學會論文集 (C編), Vol. 53, No. 7 (1987), pp. 1052–1056
[14] S. Karabay, “The Design of Octagonal Ring Dynamometers”, Journal of agricultural engineering research vol.63 (1996), pp. 9-18
[15] 三輪俊晴、稻崎一郎、湯川 功,“Blade wear and wafer chipping in dicing processes”, 日本機械學會論文集 (C編), Vol. 65, No. 630 (1999), pp. 801–806
[16] 魏榮俊、林榮渠、林庭芳,力量感測元件之應變規,初版,財團法人三聯科技教育基本會,臺北市、台灣,2012
[17] 蕭宏,半導體製程技術導論,第二版,全華圖書,新北市、台灣,2012
[18] 魏榮俊、林榮渠、林庭芳,力量感測元件之應變規,初版,財團法人三聯科技教育基本會,臺北市、台灣,2012
[19] 史平、李秦華,半導體集成電路製造手冊,第二版,電子工業出版社,北京、中國,2006
[20] 張堅浚,精密工具機技術,初版,全華圖書,新北市、台灣,2013
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.36.141
論文開放下載的時間是 校外不公開

Your IP address is 13.58.36.141
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code