Responsive image
博碩士論文 etd-0809116-185944 詳細資訊
Title page for etd-0809116-185944
論文名稱
Title
具低操作偏壓擁有高速度之高集積非傳統互補式金氧半
High Integration Non-Classical CMOS with Low Power Supply and High Speed
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-09-08
繳交日期
Date of Submission
2016-09-09
關鍵字
Keywords
傳遞延遲時間、七級環形震盪器、高集積密度、互補式金氧半、矽覆絕緣、共享摻雜區輸出節點
ring oscillator, shared-contacting output node, propagation delay time, CMOS, LUBISTOR
統計
Statistics
本論文已被瀏覽 5724 次,被下載 32
The thesis/dissertation has been browsed 5724 times, has been downloaded 32 times.
中文摘要
在本論文中,我們提出三個具有高集積密度、低操作偏壓、高速度、製程步驟簡單之非傳統互補式金氧半反相器,第一個架構為N型及P型之橫向單向性雙極性絕緣閘極電晶體所組成(Complemetary LUBISTOR),第二個架構為N型閘極控制N+-N-M電晶體及P型閘極控制M-P-P+電晶體所組成(Gated-N+NM/MPP+),第三個架構為N型橫向單向性雙極性絕緣閘極電晶體(在此架構中命名為閘極控制N+-N-P+電晶體)及P型閘極控制P+-P-N+電晶體所組成(Gated-N+NP+/P+PN+),在三個架構中的N型及P型電晶體分別取代原本傳統互補式金氧半 (CMOS)之負型金氧半電晶體(NMOS)驅動器及正型金氧半電晶體(PMOS)負載器。
根據模擬結果顯示,所提出三個架構在低操作偏壓下皆具有相當高的操作速度。架構一(Complemetary LUBISTOR)與架構三(Gated-N+NP+/P+PN+)組成之非傳統互補式金氧半反相器在操作偏壓VDD = 0.5 V時均有優良及正確的邏輯特性,且在七級環形震盪器操作中分別取得之最高頻率為22.98 GHz與9.13 GHz,較傳統互補式金氧半在相同操作偏壓與尺寸條件下分別增加近2.3K與1 K倍。而架構三(Gated-N+NP+/P+PN+)之傳遞延遲時間方面在相同操作偏壓與尺寸條件下較傳統互補式金氧半下降了55 %。此外,架構二(Gated-N+NM/MPP+)與架構三(Gated-N+NP+/P+PN+)在驅動器與負載器兩元件之間可共享摻雜區輸出節點,且為矽覆絕緣(SOI)結構,兩元件間無需做額外的淺溝槽隔離(STI)結構阻隔,相較於傳統互補式金氧半反相器,將可大幅的提升集積密度減少46.1 %的佈局面積來降低製程成本。
Abstract
This paper present three feasible non-classical complementary metal oxide semiconductor (CMOS) inverter configurations. The first structure is composed of N-type Lateral Unidirectional Bipolar-type Insulated-gate Transistor (LUBISTOR) for driver transistor and P-type LUBISTOR for load transistor (Complemetary LUBISTOR). The secand structure is composed of Gated control N+-N-M for driver N-type transistor and Gated control M-P-P+ for load P-type transistor (Gated-N+NM/MPP+). The third structure is composed of Gated control N+-N-P+ for driver N-type transistor and Gated control P+-P-N+ for load P-type transistor (Gated-N+NP+/P+PN+).
According to the TCAD simulations, the three non-classical CMOS inverter structures we presented can operation for low power supply and high speed application. The first structure (Complemetary LUBISTOR) and the third structure (Gated-N+NP+/P+PN+) have excellent CMOS inverter characteristics at VDD = 0.5 V. Also, obtain 7-stages ring oscillator with a maximum operating frequency is 22.98 GHz in first structure and 9.13 GHz in third structure, that improve about 2.3K and 1K times compare to conventional CMOS at 0.5 V power supply respectively. The third structure exhibits the propagation delay time (TP) 55% lower than that of the conventional CMOS inverter. Besides, the layout area of the second structure (Gated-N+NM/MPP+) and the third structure is significantly reduced about 46.1% when compared with the conventional CMOS inverter due to the new CMOS inverter possesses a unique shared-contacting output node.
目次 Table of Contents
第一章 導論 1
1.1 研究背景 1
1.1.1 改變結構 3
1.1.2 改變材料 7
1.1.3 使用應力技術 10
1.2 動機 12
第二章 物理機制與元件操作原理 14
2.1 元件物理機制 14
2.1.1 穿隧場效電晶體(TFET)物理與操作機制 14
2.1.2 閘極控制N+-N-M/M-P-P+與N+-N-P+/P+-P-N+電晶體物理與操作機制 16
2.2 邏輯元件操作理論與原理 22
2.2.1 傳統互補式金氧半邏輯閘操作理論與原理 22
2.2.2 以N型LUBISTOR及P型LUBISTOR所構成之具共享摻雜區域互補式金氧半反相器 28
2.2.3 以閘極控制N+-N-M電晶體及閘極控制M-P-P+電晶體所構成之具共享摻雜區域互補式金氧半反相器 31
2.2.4 以閘極控制N+-N-P+電晶體及閘極控制P+-P-N+電晶體所構成之具共享摻雜區域互補式金氧半反相器 34
第三章 元件架構設計與製程步驟 37
第四章 電性討論與分析 40
4.1 元件模擬使用之物理模型說明 40
4.2 元件模擬結果分析與討論 41
4.2.1 N型LUBISTOR(閘極控制N+-N-P+電晶體)之負型金氧半元件 41
4.2.2 閘極控制P+-P-N+ (Gated-P+PN+)電晶體之正型金氧半元件 45
4.2.3 閘極控制N+-N-P+電晶體及閘極控制P+-P-N+電晶體所構成之具共享摻雜區域非傳統互補式金氧半反相器 49
4.2.4 具共享摻雜區域非傳統互補式金氧半反相器之雜訊邊界特性 50
4.3 閘極控制N+NP+/P+PN+互補式金氧半、閘極控制N+NM/MPP+互補式金氧半及互補式LUBISTOR比較 52
4.4 數位邏輯電路模擬與應用 57
4.4.1 反或閘(NOR Gate) 57
4.4.2 反及閘(NAND Gate) 59
4.4.3 全加器(Full adder) 61
4.4.4 環形震盪器(Ring Oscillator) 63
4.4.5 靜態隨機存取記憶體(Static Random Access Memory, SRAM) 64
4.5 環形震盪器操作頻率比較 71
4.6 傳遞延遲時間(Propagation delay time)與評量指標(FOM)比較 74
4.7 閘極控制N+NP+/P+PN+互補式金氧半與傳統互補式金氧半之佈局面積比較 81
4.8 閘極控制N+NP+/P+PN+互補式金氧半反相器之邏輯電路寬度補償探討 82
4.9 閘極控制N+NP+/P+PN+互補式金氧半反相器之偏壓微縮探討 93
4.10 元件實作結果與量測 96
第五章 結論與未來展望 100
5.1 結論 100
5.2 未來展望 101
參考文獻 102
附錄 109
參考文獻 References
[1] A. S. Sedra, and K. C. Smith, Microelectronic Circuits, Fifth Edition, New York: Oxford University Press, pp. 949–952, 2004.
[2] International Technology Roadmap for Semiconductor (ITRS) (2011).
[3] G. E. Moore, “Cramming more components onto integrated circuits,” in Proc. IEEE, vol. 86, no. 1, pp. 82–85, Jan. 1998.
[4] S.-H. Oh, D. Monroe, and J. Hergenrother, “Analytic Description of Short-Channel Effects in Fully-Depleted Double-Gate and Cylindrical, Surrounding-Gate MOSFETs,” IEEE Electron Device Lett., vol. 21, no. 9, pp. 445-447, Sep. 2000.
[5] Q. Xie, J. Xu, and Y. Taur, “Review and Critique of Analytic Models of MOSFET Short-Channel Effects in Subthreshold,” IEEE Trans. Electron Devices, vol. 59, no. 6, pp. 1569–1579, Jun. 2012.
[6] J. Wu, J. Min, and Y. Taur, “Short-Channel Effects in Tunnel FETs,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 3019–3024, Jun. 2015.
[7] F. M. Waelass, and C. T. Sah, “Nanowatt Logic Using Field-Effect Metal-Oxide Semiconductor Triodes,” in Proc. IEEE Int. SSC Conf., Feb. 1963, pp. 32–33.
[8] M. J. Hargrove, S. Voldman, R. Gauthier, I. Brown, K. Duncan, and W. Craig, “Latchup in CMOS technology,” in IEEE Annu. Proc. Reliab. Phys. Symp., pp. 269–278, Apr. 1998.
[9] S. Maheshwaram, S. K. Manhas, G. Kaushal, B. Anand, and N. Singh, “Vertical Silicon Nanowire Gate-All-Around Field Effect Transistor Based Nanoscale CMOS,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1011-1013, Aug. 2011.
[10] P. Kerber, Q. Zhang, S. Koswatta, and A. Bryant, “GIDL in Doped and Undoped FinFET Devices for Low-Leakage Applications,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 6-8, Jan. 2013.
[11] A. Pal, A. B. Sachid, H. Gossner, and V. R. Rao, “Insights Into the Design and Optimization of Tunnel-FET Devices and Circuits,” IEEE Trans. Electron Devices, vol. 58, no. 4, pp. 1045-1053, Apr. 2011.
[12] Y. Morita, T. Mori, S. Migita, W. Mizubayashi, A. Tanabe, K. Fukuda, T. Matsukawa, K. Endo, S. O’uchi, Y.-X. Liu, M. Masahara, and H. Ota, “Performance Enhancement of Tunnel Field-Effect Transistors by Synthetic Electric Field Effect,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 792-794, Jul. 2014.
[13] Y. Morita, T. Mori, K. Fukuda, W. Mizubayashi, S. Migita, T. Matsukawa, K. Endo, S. O’uchi, Y. Liu, M. Masahara, and H. Ota, “Experimental Realization of Complementary p- and n- Tunnel FinFETs with Subthreshold Slopes of less than 60 mV/decade and Very Low (pA/μm) Off-Current on a Si CMOS Platform,” in IEDM Tech. Dig., Dec. 2014, pp. 243–246.
[14] D. B. Abdi, and M. J. Kumar, “In-Built N+ Pocket p-n-p-n Tunnel Field-Effect Transistor,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1170-1172, Dec. 2014.
[15] W. Wang, P.-F. Wang, C.-M. Zhang, X. Lin, X.-Y. Liu, Q.-Q. Sun, P. Zhou, and David Wei Zhang, “Design of U-Shape Channel Tunnel FETs With SiGe Source Regions,” IEEE Trans. Electron Devices, vol. 61, no. 1, pp. 193-197, Jan. 2014.
[16] M.-J. Lee, and W.-Y. Choi, “Effects of Device Geometry on Hetero-Gate-Dielectric Tunneling Field-Effect Transistors,” IEEE Electron Device Lett., vol. 33, no. 10, pp. 1459-1461, Oct. 2012.
[17] J. Wan, A. Zaslavsky, C. Le Royer, and S. Cristoloveanu, “Novel Bipolar-Enhanced Tunneling FET With Simulated High On-Current,” IEEE Electron Device Lett., vol. 34, no. 1, pp. 24-26, Jan. 2013.
[18] B. Ghosh, and M. W. Akram, “Junctionless Tunnel Field Effect Transistor,” IEEE Electron Device Lett., vol. 34, no. 5, pp. 584-586, May. 2013.
[19] Y.-R. Jhan, Y.-C. Wu, and M.-F. Hung, “Performance Enhancement of Nanowire Tunnel Field-Effect Transistor With Asymmetry-Gate Based on Different Screening Length,” IEEE Electron Device Lett., vol. 34, no. 12, pp. 1482-1484, Dec. 2013.
[20] H. Ilatikhameneh, T. A. Ameen, G. Klimeck, J. Appenzeller, and R. Rahman, “Dielectric Engineered Tunnel Field-Effect Transistor,” IEEE Electron Device Lett., vol. 36, no. 10, pp. 1097-1100, Oct. 2015.
[21] M. Liu, Y. Liu, H. Wang, Q. Zhang, C. Zhang, S. Hu, Y. Hao, and G. Han, “Design of GeSn-Based Heterojunction-Enhanced N-Channel Tunneling FET With Improved Subthreshold Swing and ON-State Current,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1262-1268, Apr. 2015.
[22] Á. Szabó, S. J. Koester, and M. Luisier, “Ab-Initio Simulation of van der Waals MoTe2–SnS2 Heterotunneling FETs for Low-Power Electronics,” IEEE Electron Device Lett., vol. 36, no. 5, pp. 514-516, May. 2015.
[23] L. Wei, S. Oh, and H.-S. P. Wong, “Performance Benchmarks for Si, III-V, TFET, and carbon nanotube FET – Re-thinking the Technology Assessment Methodology for Complementary Logic Applications,” in IEDM Tech. Dig., Dec. 2010, pp. 391–394.
[24] L. Lattanzio, L. D. Michielis, and A. M. Ionescu, “Complementary Germanium Electron–Hole Bilayer Tunnel FET for Sub-0.5-V Operation,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 167-169, Feb. 2012.
[25] M. Noguchi, S. Kim, M. Yokoyama, S. Ji, O. Ichikawa, T. Osada, M. Hata, M. Takenaka, and S. Takagi, “High Ion/Ioff and low subthreshold slope planar-type InGaAs Tunnel FETs with Zn-diffused source junctions,” in IEDM Tech. Dig., Dec. 2013, pp. 683–686.
[26] A. Villalon, C. Le Royer, P. Nguyen, S. Barraud, F. Glowacki, A. Revelant, L. Selmi, S. Cristoloveanu, L. Tosti, C. Vizioz, J.-M. Hartmann, N. Bernier, B. Prévitali, C. Tabone, F. Allain, S. Martinie, O. Rozeau, and M. Vinet, “First Demonstration of Strained SiGe Nanowires TFETs with ION beyond 700μA/μm,” in Proc. Symp. VLSI Tech. Dig., pp. 1-2, Jun. 2014.
[27] T. K. Agarwal, A. Nourbakhsh, P. Raghavan, I. Radu, S. D. Gendt, M. Heyns, M. Verhelst, and A. Thean, “Bilayer Graphene Tunneling FET for Sub-0.2 V Digital CMOS Logic Applications,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1308-1310, Dec. 2014.
[28] A. Sharma, A. A. Goud, and K. Roy, “GaSb–InAs n-TFET With Doped Source Underlap Exhibiting Low Subthreshold Swing at Sub-10-nm Gate-Lengths,” IEEE Electron Device Lett., vol. 35, no. 12, pp. 1221-1223, Dec. 2014.
[29] B. Rajamohanan, R. Pandey, V. Chobpattana, C. Vaz, D. Gundlach, K. P. Cheung, J. Suehle, S. Stemmer, and S. Datta, “0.5 V Supply Voltage Operation of In0.65Ga0.35As/GaAs0.4Sb0.6 Tunnel FET,” IEEE Electron Device Lett., vol. 36, no. 1, pp. 20-22, Jan. 2015.
[30] L. Knoll, Q.-T. Zhao, A. Nichau, S. Trellenkamp, S. Richter, A. Schäfer, D. Esseni, L. Selmi, K. K. Bourdelle, and S. Mantl, “Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors,” IEEE Electron Device Lett., vol. 34, no. 6, pp. 813-815, Jun. 2013.
[31] D. Verreck, A. S. Verhulst, M. L. Van de Put, B. Sorée, N. Collaert, A. Mocuta, A. Thean, and G. Groeseneken, “Uniform Strain in Heterostructure Tunnel Field-Effect Transistors,” IEEE Electron Device Lett., vol. 37, no. 3, pp. 337-340, Mar. 2016.
[32] L. Lattanzio, L. D. Michielis, and A. M. Ionescu, “Complementary Germanium Electron–Hole Bilayer Tunnel FET for Sub-0.5-V Operation,” IEEE Electron Device Lett., vol. 33, no. 2, pp. 167-169, Feb. 2012.
[33] Y. Ōmura, “A lateral, unidirectional, bipolar-type insulated-gate transistor-A novel semiconductor device,” Applied Physics Letters, vol. 40, no.6, pp. 528-529, Mar. 1982.
[34] Y. Ōmura, “Lateral Unidirectional Bipolar-type Insulated-Gate Transistors,” Japanese Journal of Applied Physics, vol. 22, no.1, pp. 263-266, 1983.
[35] K. Boucart, W. Riess, and A. M. Ionescu, “Lateral Strain Profile as Key Technology Booster for All-Silicon Tunnel FETs,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 656-658, Jun. 2009.
[36] Y. Khatami, and K. Banerjee, “Steep Subthreshold Slope n- and p-Type Tunnel-FET Devices for Low-Power and Energy-Efficient Digital Circuits,” IEEE Trans. Electron Devices, vol. 56, no. 11, pp. 2752-2761, Nov. 2009.
[37] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Si-Nanowire n-Type Tunneling FETs With Low Subthreshold Swing (≤ 50 mV/decade) at Room Temperature,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 437-439, Apr. 2011.
[38] N. N. Mojumder, and K. Roy, “Band-to-Band Tunneling Ballistic Nanowire FET: Circuit-Compatible Device Modeling and Design of Ultra-Low-Power Digital Circuits and Memories” IEEE Trans. Electron Devices, vol. 56, no. 10, pp. 2193-2201, Oct. 2009.
[39] ATHENA User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[40] ATLAS User’s Manual: Device Simulation Software, Silvaco International Inc., Santa Clara, Sep. 2010.
[41] S. D. Vusser, J. Genoe, and P. Heremans, “Influence of Transistor Parameters on the Noise Margin of Organic Digital Circuits,” IEEE Trans. Electron Devices, vol. 53, no. 4, pp. 601-610, Apr. 2006.
[42] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Forth Edition, Boston, MA: Pearson Education, pp.501–503, 2010.
[43] J. Wang, S. Nalam, and B. H. Calhoun, “Analyzing static and dynamic write margin for nanometer SRAMs,” in Proc. ACM/IEEE Int. Symp. Low Power Electron. Design, Aug. 2008, pp. 129–134.
[44] G. Pasandi, and S. M. Fakhraie, “An 8T Low-Voltage and Low-Leakage Half-Selection Disturb-Free SRAM Using Bulk-CMOS and FinFETs,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2357-2363, Jul. 2014.
[45] M. Bajaj, K. Nayak, S. Gundapaneni and V. R. Rao, “Effect of Metal Gate Granularity Induced Random Fluctuations on Si Gate-All-Around Nanowire MOSFET 6-T SRAM Cell Stability,” IEEE Trans. Nanotechnology, vol. 15, no. 2, pp. 243-247, Mar. 2016.
[46] Y.-H. Lin, “An Unipolar CMOS with Elevated Body and Spacer for Low Voltage Logic Gates Application,” M.S. thesis, Dept. Elect. Eng., National Sun Yat-Sen Uniy., Kaohsiung, Taiwan, 2015.
[47] C. Li, and J. Lin, “A 1–9 GHz Linear-Wide-Tuning-Range Quadrature Ring Oscillator in 130 nm CMOS for Non-Contact Vital Sign Radar Application,” IEEE Microwave Wireless components Lett., vol. 20, no. 1, pp. 34-36, Jan. 2010.
[48] X. Yang, J. Chauhan, J. Guo, and K. Mohanram, “Graphene Tunneling FET and its Applications in Low-power Circuit Design,” in Proc. ACM GLSVLSI, May. 2010, pp. 263–268.
[49] L. Lattanzio, N. Dagtekin, L. D. Michielis, and A. M. Ionescu, “On the Static and Dynamic Behavior of the Germanium Electron-Hole Bilayer Tunnel FET,” IEEE Trans. Electron Devices, vol. 59, no. 11, pp. 2932-2938, Nov. 2012.
[50] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Third Edition, A John Wiley & Sons, inc., publication, pp. 317–318, 2010.
[51] K.-C. Juang, J.-T. Lin, W.-H. Lee, T.-C. Chang, C.-K. Huang, C.-C. Lai, B.-C. Yan, and Y.-H. Lin, “An Improved Unipolar CMOS with Elevated Body and Spacer for Low-Power Application,” in Proc. Symposium on Nano Device Technology, Sep. 2015.
[52] J.-T. Lin, S. Haga, M.-T. Shih, and Y.-H. Lin, “A new low power unipolar CMOS,” Solid-State and Integrated Circuit Technology (ICSICT), IEEE International Conference, Oct. 2014, pp. 1–4.
[53] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, Third Edition, A John Wiley & Sons, inc., publication, pp. 353–354, 2010.
[54] S. Richter, S. Trellenkamp, A. Schäfer, J. M. Hartmann, K. K. Bourdelle, Q.-T. Zhao, and S. Mantl1, “Tunnel-FET Inverters for Ultra-low Power Logic with Supply Voltage down to VDD = 0.2 V,” in Proc. 15th Int. Conf. ULIS, Apr. 2014, pp. 13–17.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code