Responsive image
博碩士論文 etd-0809116-211003 詳細資訊
Title page for etd-0809116-211003
論文名稱
Title
磁性史科子在鈷薄膜之磁轉向範圍內的演化過程
The Evolution of Magnetic Skyrmion in the Spin Reorientation Transition Range of Co/Au(111)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-15
繳交日期
Date of Submission
2016-09-09
關鍵字
Keywords
Dzyaloshinskii-Moriya interaction、模擬、磁區、磁轉向、磁性史科子
domain, simulation, Dzyaloshinskii-Moriya interaction, spin reorientation transition, Magnetic skyrmion
統計
Statistics
本論文已被瀏覽 5711 次,被下載 45
The thesis/dissertation has been browsed 5711 times, has been downloaded 45 times.
中文摘要
磁性史科子(Magnetic skyrmion) 是種漩渦狀的結構,它被用來預測可以作為儲
存裝置。 塊狀材料如 MnSi,FeGe 和一些超薄磁性物質裡頭以觀察到有如此的結
構。 Skyrmion結構中異常的自傾斜旋被認為是 Dzyaloshinskii-Moriya interaction
(DMi) 所 造 成 , 但 是 此 種 現 象 在 磁 轉 向 過 程 , 即spin reorientation transition
(SRT)中也被觀察到,因此我們想證明就算沒有 DMi 也能產生 skyrmion。 在
SRT 附近的模擬中我們觀察到複雜的結構,其中有條紋狀、不規則塊狀和圓形如
skyrmion 般的形狀。 隨著磁場的增加,反向的磁區縮小減少,而其中有些封閉
條紋和圓形變成如 skyrmion 一般的漩渦。 在某些磁區牆的不連續處形成了被稱
為反漩渦的結構。 為了去確認這些粒子般的結構為何,我們用了稱之為 skymion
number 的方法來分析。 得到了想要的答案後便證明了即使沒有 DMi, 在 SRT 的
範圍內一樣可以找到 skyrmion。
Abstract
Magnetic skyrmion, a quasiparticle-like spin texture, attracted lots of attention
due to its promising potential on magnetic memory device and spintronics.The
formation of skyrmion in ultrathin regime is usually attributed to the broken
symmetry induced Dzyaloshinskii-Moriya interaction (DMI), resulting in the spin
canting at the surface of ultrathin film.In the regime of spin reorientation transi-
tion (SRT)the metastable phase in magnetism might provide similar spin config-
urations. This suggests that it is possible to create skyrmion without the DMI.
In this thesis, we address this issue by the micromagnetic simulation taking ex-
change, magnetic anisotropy, demagnetization and Zeeman energies into consid-
erations. The system we explored is cobalt on gold (111). Skyrmion like particles
were found in the SRT range of cobalt. At the field between 5 mT to 11 mT,
skyrmions formed with high symmetry circular shape. The size of skyrmions
varied with field, from 216 nm in 5 mT to 48 nm in 11 mT. We also found that
vortexes can only form from the closed stripe domains, and anti-vortexes come
from somewhere the domain wall alignments are discontinuous. To confirm the
vortex as skyrmion, we computed the skyrmion number of the vortex.The num-
ber is close to a unity, suggesting the vortex texture is a skyrmion. This implies
that the skyrmion can exist without DMI in the SRT regime.
目次 Table of Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . .1
1.1
Skyrmion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2
Computer Simulation . . . . . . . . . . . . . . . . . . . . . . .2

2 Basic Concept. . . . . . . . . . . . . . . . . . . . . . .4
2.1
Magnetic energy. . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1
Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2
Uniaxial Anisotropy . . . . . . . . . . . . . . . . . . . . . . .6
2.1.3
Demagnetization . . . . . . . . . . . . . . . . . . . . . . . . .6
2.1.4
Zeeman Energy . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.2
Precession of Moments . . . . . . . . . . . . . . . . . . . . . .8
2.3
Spin Reorientation Transition . . . . . . . . . . . . . . . . . .8
2.4
Simulation Princple . . . . . . . . . . . . . . . . . . . . . . .9

3 Results and discussion. . . . . . . . . . . . . . . . . . . . . . .10
3.1
Parameters in Simulation . . . . . . . . . . . . . . . . . . . . 10
3.2
Configurations near the transition thickness . . . . . . . . . . 11
3.3
Evolution of skyrmion in external field . . . . . . . . . . . . .14
3.4
Particles Annihilation . . . . . . . . . . . . . . . . . . . . . 16
3.4.1
Anti-vortexes . . . . . . . . . . . . . . . . . . . . . . . . . .16
3.4.2
Vortex and Anti-vortex . . . . . . . . . . . . . . . . . . . . . 18
3.5
Skyrmion Number . . . . . . . . . . . . . . . . . . . . . . . . .21
3.6
Local Charge Density . . . . . . . . . . . . . . . . . . . . . . 23
3.7
Topological Invariant . . . . . . . . . . . . . . . . . . . . . .23
3.8
Field Dependent Skyrmion Size . . . . . . . . . . . . . . . . . .28
3.9
MATLAB function . . . . . . . . . . . . . . . . . . . . . . . . .29
3.9.1
avf2ovf . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.9.2
oommf2matlab . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9.3
Skyrmion Number . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9.4
Skyrmion Size . . . . . . . . . . . . . . . . . . . . . . . . . .35

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . .39
參考文獻 References
[1] Skyrmions in chiral magnets. viii, 3
[2] Albert Fert, Vincent Cros, and Joao Sampaio. Skyrmions on the track. Nat
Nano, 8(3):152–156, Mar 2013. viii, 4
[3] T. Jeong and W. E. Pickett. Implications of the b20 crystal structure for the
magnetoelectronic structure of MnSi. Phys. Rev. B, 70:075114, Aug 2004. viii,
5
[4] A. Bogdanov and A. Hubert. Thermodynamically stable magnetic vortex
states in magnetic crystals. Journal of Magnetism and Magnetic Materials,
138(3):255 – 269, 1994. 1
[5] U. K. Roszler, A. N. Bogdanov, and C. Pfleiderer. Spontaneous skyrmion
ground states in magnetic metals. Nature, 442(7104):797–801, Aug 2006. 1
[6] O. livier Boulle, J. an Vogel, H. ongxin Yang, S. tefania Pizzini, D. ayane de
Souza Chaves, A. ndrea Locatelli, T. evfik O. nur Mentes ̧, A. lessandro Sala,
L. iliana D. . Buda-Prejbeanu, O. livier Klein, M. ohamed Belmeguenai, Y. ves
Roussign, A. ndrey Stashkevich, S. alim M. ourad Chrif, L. ucia Aballe,
M. ichael Foerster, M. airbek Chshiev, S. tphane Auffret, I. oan M. ihai Miron,
and G. illes Gaudin. - Room-temperature chiral magnetic skyrmions in ul-
trathin magnetic nanostructures. - 11(- 5):– – 454, - 2016/05//print. 1
[7] Akira Tonomura, Xiuzhen Yu, Keiichi Yanagisawa, Tsuyoshi Matsuda,
Yoshinori Onose, Naoya Kanazawa, Hyun Soon Park, and Yoshinori Tokura.
41
Real-space observation of skyrmion lattice in helimagnet mnsi thin samples.
Nano Letters, 12(3):1673–1677, 2012. PMID: 22360155. 1
[8] X. Z. Yu, N. Kanazawa, Y. Onose, K. Kimoto, W. Z. Zhang, S. Ishiwata,
Y. Matsui, and Y. Tokura. Near room-temperature formation of a skyrmion
crystal in thin-films of the helimagnet fege. Nat Mater, 10(2):106–109, Feb
2011. 1
[9] X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui,
N. Nagaosa, and Y. Tokura. Real-space observation of a two-dimensional
skyrmion crystal. Nature, 465(7300):901–904, Jun 2010. 1
[10] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of
antiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241 – 255,
1958. 1
[11] Toru Moriya. Anisotropic superexchange interaction and weak ferromag-
netism. Phys. Rev., 120:91–98, Oct 1960. 1
[12] M. Speckmann, H. P. Oepen, and H. Ibach. Magnetic domain structures in
ultrathin co/au(111): On the influence of film morphology. Phys. Rev. Lett.,
75:2035–2038, Sep 1995. 11
[13] O. A. Tretiakov and O. Tchernyshyov. Vortices in thin ferromagnetic films
and the skyrmion number. Phys. Rev. B, 75:012408, Jan 2007. 21
[14] F. D. M. Haldane. O(3) nonlinear σ model and the topological distinction
between integer- and half-integer-spin antiferromagnets in two dimensions.
Phys. Rev. Lett., 61:1029–1032, Aug 1988. 23
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code