Responsive image
博碩士論文 etd-0810106-100344 詳細資訊
Title page for etd-0810106-100344
論文名稱
Title
紅腳蟳血藍蛋白生化特性研究
Study on biochemical characteristics of hemocyanins in mud crab Scylla olivacea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-13
繳交日期
Date of Submission
2006-08-10
關鍵字
Keywords
雌性特有血藍蛋白、紅腳蟳、血藍蛋白、十二隅體血藍蛋白、六隅體血藍蛋白、非呼吸蛋白
24S hemocyanin, hemocyanin, Scylla olivacea, 16S hemocyanin, female- specific hemocyanin, FSH, non-respiratory protein, NRP
統計
Statistics
本論文已被瀏覽 5676 次,被下載 2810
The thesis/dissertation has been browsed 5676 times, has been downloaded 2810 times.
中文摘要
甲殼類生物的呼吸蛋白為血藍蛋白(hemocyanin),是一種含銅蛋白,為甲殼生物血淋巴中含量最豐富的蛋白質。本研究分析紅腳蟳(Scylla olivacea)成蟳血淋巴中四個血藍蛋白分子的生理生化特性,此四個血藍蛋白分別為十二隅體血藍蛋白(24S hemocyanin)、六隅體血藍蛋白(16S hemocyanin)、雌性特有血藍蛋白(Female-specific hemocyanin: FSH)與非呼吸蛋白(Non-respiratory protein: NRP)。24S 與16S 血藍蛋白為成體的通用呼吸蛋白,兩者之間可互相轉換,24S 血藍蛋白在pH 8.3、且具充足Ca2+的溶液中維持十二隅體的型態;在pH 值8.9,或Ca2+不充足的溶液中,24S 血藍蛋白解離成16S 血藍蛋白或單元體。將溶液酸鹼值調降到8.3,且添加充足的鈣離子,僅有少量的16S 血藍蛋白再結合成24S 血藍蛋白,顯示由六隅體結合成十二隅體需要酸鹼值與鈣離子以外的條件。純化自血淋巴液的16S 血藍蛋白次單元體之間有雙硫鍵的鍵,而24S 血藍蛋白的次單元體之間並共價結構,因此可確認血淋巴液中的16S 血藍蛋白並非全由24S 血藍蛋白解離而來,且在自然狀態下,紅腳蟳血淋巴液內應同時存在著24S 與16S 血藍蛋白。雌性特有血藍蛋白之次單元體分子量約為79 kDa,經生化分析確認其含Cu、且具有與氧氣結合能力。由氧分壓曲線結果得知:雌性特有血藍蛋白的氧氣結合能力稍弱於16S 血藍蛋白。免疫分析結果發現Anti-FSH 血清可辨識16S 血藍蛋白,這說明雌性特有血藍蛋白與16S 血藍蛋白的結構有相似之處。由於雌性特有血藍蛋白出現於卵成熟母蟳、卵及初生幼體之中,因而推測雌性特有血藍蛋白的功能在於輔助這些個體由外界取得雌性特有血藍蛋白充足的氧氣。非呼吸蛋白為不帶銅、且不具與氧氣接合能力的蛋白質,普遍存在於各性別的成蟳之血淋巴液中,含量頗高但個體間差異很大。非呼吸蛋白之次單元體分子量約75 kDa,雷同於紅腳蟳血藍蛋白次單元體分子量,且其次單元體中的一個可被Anti-FSH 血清辨識,表示此次單元體結構與血藍蛋白相似,因而推斷非呼吸蛋白應屬於血藍蛋白類似分子。醣蛋白染色分析顯示非呼吸蛋白的碳水化合物含量高於雌性特有血藍蛋白,更遠高於16S 與24S 血藍蛋白。紅腳蟳的非呼吸蛋白之功能仍未知,有待進一步確認。
Abstract
Hemocyanin, a copper containing protein, is the respiratory protein of Crustacea. Here, 4 major hemocyanin molecules in the hemolymph of Scylla olivacea were purified and studied. Both two-hexamer (24S) and hexamer (16S) form of hemocyanin are present in all adult’s hemolymph. In vitro, 24S hemocyanin dissociates into two 16S hemocyanin in the absence of calcium under high pH value (> 8.9). Little of 16S hemocyanin assembles spontaneously into 24S hemocyanin after calcium is added. Both 16S and 24S hemocyanins were purified from hemolymph, the 16S hemocyanin differs from the 24S hemocyanin in the presence of intersubunit disulfide bonds, it is inferred that not all native 16S hemocyanin dissociates from 24S hemocyanin. Besides the 24S and 16S hemocyanin, there are two massive proteins in the hemolymph of ovary-maturing female S. olivacea. One is female-specific hemocyanin (FSH), which occurs in the hemolymph of ovary-maturing females, but not in the hemolymph of juveniles of either sex or in adult males. FSH is confirmed as a hemocyanin due to its copper content and oxygen binding ability. FSH is also found in ovary, embryo and early-stage zoea, and is proposed to be an important hemocyanin that supplies enough oxygen for ovary-maturing female crab, egg, embryo and early-stage zoea. Another massive hemolymph protein is a non-respiratory protein (NRP) that is present in hemolymph of adults of both sex, the molecular mass of its subunits is similar to hemocyanin and FSH, and one of subunits can be slightly recognized by anti-FSH antibody. NRP is not a respiratory protein, there is neither copper containing nor absorbance of 340nm. FSH and NRP, especially NRP, contain more carbohydrates than the 16S hemocyanin.
目次 Table of Contents
謝辭…………………………………………………………………… 一
中文摘要……………………………………………………………… 二
英文摘要……………………………………………………………… 三
目錄…………………………………………………………………… 四
表目次………………………………………………………………… 五
圖目次………………………………………………………………… 六
略稱對照……………………………………………………………… 八
前言…………………………………………………………………… 1
材料與方法…………………………………………………………… 9
結果…………………………………………………………………… 17
討論…………………………………………………………………… 23
參考文獻……………………………………………………………… 35
表……………………………………………………………………… 44
圖……………………………………………………………………… 45
附錄…………………………………………………………………… 59
參考文獻 References
左榮昇。四種蟳大眼幼體在外部型態及族群動態上之差異。國立中山大學海洋生物研究所碩士學位論文,2002。
何詩琥。蟳(Scylla serrata)之卵黃素生成及血淋巴中主要雌性特有蛋白之純化與特性分析。國立中山大學海洋生物研究所碩士學位論文,1995。
沈國愉。鋸緣青蟹(Scylla serrata)卵黃生成之研究。國立台灣大學動物學研究所碩士學位論文,1997。
施心展。四種青蟹(Scylla spp.)在外部形態上及核糖體DNA上之差異。國立中山大學海洋生物研究所碩士學位論文,1999。
陳昭穎。紅腳蟳(Scylla olivacea)之血藍素在卵黃生成中和胚胎及幼苗發育中之變化。國立中山大學海洋生物研究所碩士學位論文,1998。
劉行琨。脫殼類固醇對草蝦(Penaeus monodon) Y器官之迴饋控制。國立中山大學海洋生物研究所碩士學位論文,1998。
Adachi, K., Hirata, T., Nagai, K. and Sakaguchi, M. 2001. Hemocyanin a most likely inducer of black spots in kuruma prawn Penaeus japonicus during storage. Journal of Food Science 66: 1130-1136.
Baden, S. P., Pihl, L. and Rosenberg, R. 1990. Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Marine Ecology Progress Series 67: 141-155.
Burmester, T. 1999. Identification, molecular cloning, and phylogenetic analysis of a non-respiratory pseudo-hemocyanin of Homarus americanus. The Journal of Biological Chemistry 274: 13217-13222
Burmester, T. 2001. Molecular evolution of the arthropod hemocyanin superfamily. Molecular Biology and Evolution 18: 184-195.
Burmester, T. 2002. Origin and evolution of arthropod hemocyanins and related proteins. Journal of Comparative Physiology 172B: 95-117.
Burmester, T. and Scheller, K. 1996. Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. Journal of Molecular Evolution 42: 713-728.
Burmester, T., Massey, H. C. Jr, Zakharkin, S. O. and Beneš, H. 1998. The Evolution of hexamerins and the phylogeny of insects. Journal of Molecular Evolmtion 47: 93-108.
Chen, J. C. and Chia, P. K. 1997. Oxyhemocyanin, protein, osmolality and electrolyte levels in the hemolymph of Scylla serrata in relation to size and molting cycle. Journal of Experimental Marine Biology and Ecology 217: 93-105.
Chen, L., Jiang, H., Zhou, Z., Li, K., Li, K., Deng, G. Y. and Liu, Z. 2004. Purification of vitellin from the ovary of Chinese mitten-handed crab (Eriocheir sinensis) and development of an antivitellin ELISA. Comparative Biochemistry and Physiology 138B: 305-11.
Cheng, S. Y. and Chen, J. C. 2002. Study on the oxyhemocyanin, deoxyhemocyanin, oxygen affinity and acid-base balance of Marsupenaeus japonicus following exposure to combined elevated nitrite and nitrate. Aquatic Toxicology 61: 181-193.
Decker, H. and Rimke, T. 1998. Tarantula hemocyanin shows phenoloxidase activity. The Journal of Biological Chemistry 273: 25889-25892.
Decker, H., Richy, B. and Gill, S. J. 1986. Structural and function studies on the hemocyanin of the mangrove crab, Scylla serrata. Pp. 395-398 in Invertebrate Oxygen Carriers. B. Linzen, ed. Springer, Heidelberg.
Decker, H., Ryan, M., Jaenicke, E. and Terwilliger, N. 2001. SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. The Journal of Biological Chemistry 276: 17796-17799.
deFur, P. L., Mangum, C. P. and Reese, J. E. 1990. Respiratory responses of the blue crab Calllinectes sapidus to long-term hypoxia. The Biological Bulletin 178: 46-54.
Destoumieux-Garzon, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P. and Bachere, E. 2001. Crustacean immunity: antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. The Journal of Biological Chemistry 275: 47070-47077.
Dolashka-Angelova, P., Beltramini, M., Dolashki, A., Salvato, B., Hristova, R. and Voelter, W. 2001. Carbohydrate composition of Carcinus aestuarii hemocyanin. Archives of Biochemistry and Biophysics 389: 153-158.
Durliat, M. 1984. Occurrence of plasma proteins in ovary and egg extracts from Astacus leptodactylus. Comparative Biochemistry and Physiology 78B: 745-753.
Durstewitz, G. and Terwilliger, N. B. 1997. cDNA cloning of a developmentally regulated hemocyanin subunit in the crustacean Cancer magister and phylogenetic analysis of the hemocyanin gene family. Molecular Biology and Evolution 14: 266-276.
Engel, D. W., Brouwer, M. and Mercaldo-Allen, R. 2001. Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Marine Environmental Research 52: 257-269.
Engel, D. W., Brouwer, M. and McKenna, S. 1993. Hemocyanin concentrations in marine crustaceans as a function of environmental conditions. Marine Ecology Progress Series 93: 233-244.
Fielder, D. K., Rao, K. R. and Fingerman, M. 1971. A female-limited lipoprotein and the diversity of hemocyanin components in the dimorphic variant of the fiddler crab Uca pugilator, as revealed by disc electrophoresis. Comparative Biochemistry and Physiology 39B: 291-297
Gibson, R. and Barker, P. L. 1979. The decapod hepatopancreas. Oceanography and Marine Biology Annual Review 17: 285-346.
Gilchrist, R. A. and Lee, W. L. 1972. Carotenoid pigments and their possible role in reproduction in the sand crab Emerita analoga. Comparative Biochemistry and Physiology 42B: 263-294.
Grossmann, J. G., Ali, S. A., Abbasi, A., Zaidi, Z. H., Stoeva, S., Voelter, W. and Hasnain, S. S. 2000. Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin. Biophysical Journal 78: 977-981.
Hagerman, L. 1986. Haemocyanin concentration in the shrimp Crangon crangon (L.) after exposure to moderate hypoxia. Comparative Biochemistry and Physiology 85A: 721-724.
Hagner-Holler, S., Schoen, A., Erker, W., Marden, J. H., Rupprecht, R., Decker, H. and Burmester, T. 2004. A respiratory hemocyanin from an insect. The Proceedings of the National Academy of Sciences 101: 871-874.
Haunerland, N. H. 1996. Insect storage proteins: gene families and receptors. Insect Biochemistry and Molecular Biology 26: 755-765.
Hughes, A. L. 1999. Evolution of the arthropod prophenoloxidase/hexamerin protein family. Immunogenetics. 49: 106-114.
Kapitany, R. A. and Zebrowski, E. J. 1973. A high resolution PAS stain for polyacrylamide gel electrophoresis. Analytical Biochemistry 56: 361-369.
Khayat, M., Funkenstein, B., Tietz, A. and Lubzens, E. 1995. In vivo, in vitro and cell free synthesis of hemocyanin in the shrimp Penaeus semisulcatus (de Haan). Comparative Biochemistry and Physiology 112B: 31-38.
Klippenstein, G. L. 1980. Structural aspects of hemerythin and myohemerythrin. American Zoologist 20: 39-51.
Kusche, K. and Burmester, T. 2001a. Diplopod hemocyanin sequence and the phylogenetic position of the Myriapoda. Molecular Biology and Evolution 18: 1566-1573.
Kusche, K. and Burmester, T. 2001b. Molecular cloning and evolution of lobster hemocyanin. Biochemical and Biophysical Research Communications 282: 887-892.
Kusche, K., Ruhberg, H. and Burmester, T. 2002. A hemocyanin from the Onychophora and the emergence of respiratory proteins. The Proceedings of the National Academy of Sciences 99: 10545-10548.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Larson, B. A., Terwilliger, N. B. and Terwilliger, R. C. 1981. Subunit heterogeneity of Cancer magister hemocyanin. Biochimica et Biophysica Acta 667: 294-302.
Lee, S. Y., Lee, B. L. and Söderhäll, K. 2003. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish pacifastacus leniusculus. The Journal of Biological Chemistry 278: 7927-7933.
Lee, S. Y., Lee, B. L. and Söderhäll, K. 2004. Processing of crayfish hemocyanin subunits into phenoloxidase. Biochemical and Biophysical Research Communications 322: 490-496.
Linzen, B., Soeter, N. M., Riggs, A. F., Schneider, H. J., Schartau, W., Moore, M. D., Behrens, P. Q., Nakashima, H., Takagi, T., Nemoto, T., Vereijken, J. M., Bak, H. J., Beintema, J. J., Volbeda, A., Gaykema, W. P. J. and Hol, W. G. J. 1985. The structure of arthropod hemocyanins. Science 229: 519-524
Mangum, C. P., McMahon, B. R., deFur, P. L. and Wheatly, M. G. 1985. Gas-exchange, acid-base balance and the oxygen-supply to the tissues during a molt of the blue crab Callinectes sapidus. Journal of Crustacean Biology 5: 207-215.
Markl, J. 1980. Hemocyanin in spider XI. The quarternary structure of Cupiennius hemocyanin. Journal of Comparative Physiology 140B: 199-207.
Markl, J. 1986. Evolution and function of structurally diverse subunits in the respiratory protein hemocyanin from arthropods. The Biological Bulletin 171: 90-115.
Markl, J., Hofer, A., Bauer, G., Markl, A., Kempter, B., Brenzinger, M. and Linzen, B. 1979a. Subunit heterogeneity in arthropod hemocyanins: II. Crustacean. Journal of Comparative Physiology 133B: 167-175.
Markl, J., Markl, A., Schartau, W. and Linzen, B., 1979b. Subunit heterogenity in arthropod hemocyanins. I. Chelicerata. Journal of Comparative Physiology 130B: 283-292.
Mason, R. P., Mangum, C. P. and Godette, G. 1983. The influence of inorganic ions and acclimation salinity on hemocyanin oxygen binding in the blue crab Callinectes sapidus. The Biological Bulletin 164: 104-123.
Mykles, D. 1980. The mechanism of fluid absorption at ecdysis in the American lobster Homarus americanus. The Journal of Experimental Biology 84:89-101.
Nagai, T. and Kawabata, S. 2000. A link between blood coagulation and prophenoloxidase activation in arthropod host defense. The Journal of Biological Chemistry 275: 29264-29267.
Nagai, T., Osaki, T. and Kawabata, S. 2001. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides. The Journal of Biological Chemistry 276: 27166-27170
Pratoomchat, B., Sawangwong, P., Pakkong, P. And Machado, J. 2002. Organic and inorganic compound variations in haemolymph, epidermal tissue and cuticle over the molt cycle in Scylla serrata (Decapoda). Comparative Biochemistry and Physiology 131A: 243-255.
Rainer, J. and Brouwer, M. 1993. Hemocyanin synthesis in the blue crab Callinectes sapidus. Comparative Biochemistry and Physiology 104B: 69-73.
Salvato, B., Sanamaria, M., Beltramini, M., Alzuet, G. and Casella, L. 1998. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Biochemistry 37: 14065-14077.
Sánchez, D., Ganfornina, M. D., Gutiérrez, G. and Bastani, M. J. 1998. Molecular characterization and phylogenetic relationship of a protein with potential oxygen-binding capabilities in the grasshopper embryo. A hemocyanin in insects? Molecular Biology and Evolution 15: 415-426.
Sheehan, H. L. and Storey, G. W. 1947. An improved method of staining leukocyte granules with Sudan Black B. Journal of Pathology and Bacteriology 59: 336-337.
Spindler, K. D., Hennecke, R. and Gellisson, G. 1992. Protein production and the molting cycle in the crayfish Astacus leptodactylus (Nordmann, 1842). II. Hemocyanin and protein synthesis in the midgut gland. General and Comparative Endocrinology 85: 248-253.
Stöcker, W., Raeder, U., Bijlholt, M. M. C., Wichertjes, T., van Bruggen, E. F. and Markl, J. 1988. The quaternary structure of four crustacean two-hexameric hemocyanins: immunocorrelation, stoichiometry, reassembly and topology of individual subunits. Journal of Comparative Physiology 158B: 271-289.
Terwilliger, N. B. 1998. Functional adaptations of oxygen-transport proteins. The Journal of Experimental Biology 201: 1085-1098.
Terwilliger, N. B. 1999. Hemolymph proteins and molting in crustaceans and insects. American Zoologist 39: 589-599.
Terwilliger, N. B. and Dumler, K. 2001. Ontogeny of decapod crustacean hemocyanin: effects of temperature and nutrition. The Journal of Experimental Biology 204: 1013-1020
Terwilliger, N. B. and Otoshi, C. 1994. Cryptocyanin and hemocyanin: fluctuations and functions of crab hemolymph proteins during molting. Physiologist 37: A67.
Terwilliger, N. B. and Terwilliger, R. C. 1982. Changes in the subunit structure of Cancer magister hemocyanin during larval development. The Journal Experimental Zoology 221: 181-191.
Terwilliger, N. B., Dangott, L. and Ryan, M. 1999. Cryptocyanin, a crustacean molting protein: Evolutionary link with arthropod hemocyanins and insect hexamerins. The Proceedings of the National Academy of Sciences 96: 2013-2018
Terwilliger, N. B., Ryan, M. C. and Towle, D. 2005. Evolution of novel functions: cryptocyanin helps build new exoskeleton in Cancer magister. The Journal of Experimental Biology 208: 2467-2474.
Tseneklidou-Stoeter, D., Gerwig, G. J., Kamerling, J. P., and Spindler, K.-D. 1995. Characterization of N-linked carbohydrate chains of the crayfish, Astacus leptodactylus haemocyanin. Biological Chemistry Hoppe-Seyler 376: 531-537.
van Holde, K. E., Miller, K. I. and Decker, H. 2001. Hemocyanins and invertebrate evolution. The Journal of Biological Chemistry 276: 15563-15566.
van Kuik, J. A., Breg, J., Kolsteeg, C. E. M., Kamerling, J. P. and Vliegenthart, J. F. G.. 1987. Primary structure of the acidic carbohydrate chain of hemocyanin from Panulirus interruptus. FEBS Letters 221: 150-154.
van Kuik, J. A., Kamerling J. P. and Vliegenthart, J. F. G. 1990. Carbohydrate analysis of hemocyanins. Pp. 157-163 in Invertebrate Dioxygen Carriers. G. Préaux, and R. Lontie, eds. Leuven University Press, Leuven.
Waxman, L. 1975. The structure of arthropod and mollusc hemocyanins. The Journal of Biological Chemistry 250: 3796-3806.
Zatta, P. 1981. Protein-lipid interactions in Carcinus maenas (Crustacea) hemocyanin. Comparative Biochemistry and Physiology 69B: 731-735.
Zlateva, T., Di Muro, P., Salvato, B. and Beltramini, M. 1996. The o-diphenol oxidase activity of arthropod hemocyanin. FEBS Letters 384: 251-254.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code