Responsive image
博碩士論文 etd-0810106-142807 詳細資訊
Title page for etd-0810106-142807
論文名稱
Title
以Mo/SiO2為布拉格反射層製作固態微型諧振器與濾波器之研究
The Study of Solidly Mounted Resonators and Filters Using Mo/SiO2 as Bragg Reflector
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-18
繳交日期
Date of Submission
2006-08-10
關鍵字
Keywords
諧振器、氮化鋁、體聲波
AlN, Bulk
統計
Statistics
本論文已被瀏覽 5705 次,被下載 3261
The thesis/dissertation has been browsed 5705 times, has been downloaded 3261 times.
中文摘要
本論文的研究目標為2.5GHz固態微型諧振器與濾波器之元件製作及特性分析;使用雙靶直流及射頻濺鍍系統,搭配原子力顯微鏡(AFM)量測,尋找低粗糙度之Mo 與SiO2 的薄膜製程,以最佳粗糙度參數交替沈積厚度為四分之ㄧ波長的高低聲阻抗的反射層結構,製作布拉格反射器;並利用反應性射頻磁控濺鍍法沈積氮化鋁壓電薄膜。

在布拉格反射層的研究中發現,使用低聲阻抗二氧化矽與高聲阻抗鉬所組成的反射層具有適當的高低聲阻抗比,而且藉由最小粗糙度的製程調變,得到剖面型態優良及介面清晰的反射器,適合製作固態微型諧振器(SMR)元件。

在元件的頻率響應分析方面,在所設計的2.5GHz 處有明顯之諧振現
象,顯示本論文中實驗所製作之Mo 與SiO2 確實適合製作SMR 元件;然而,在1.4GHz 也出現一明顯的諧振響應。為了探究此一訊號之成因,本論文針對三個方向進行驗證與探究,首先調變反射層最上層Mo 的厚度,其次驗證λ/2 與λ/4 諧振模態的影響,最後調整壓電層的c-軸成長角度。

由量測結果發現反射層並不參與聲波共振,且λ/2 與λ/4 諧振模態對頻率響應並無影響;而由基板傾斜製程濺鍍壓電層,可以抑制1.4GHz 的諧振現象,確認沿著非垂直基板方向傳遞的剪波為1.4GHz 諧振的成因,並且在2.5GHz可得到S11 為- 64.9dB 的諧振響應,大幅增加SMR 元件諧振之特性。
Abstract
In this study, the Bragg reflectors deposited by DC and RF
magnetron sputtering are composed of alternating layers of high and low acoustic impedance materials which have a thickness of one quarter wavelength at the desired resonance frequency, while the piezoelectric layer, aluminum nitride thin film, was deposited by RF reactive magnetron sputtering.
The deposition parameters of Mo and SiO2 thin films are tuned according to the AFM measurement. With the optimal deposition parameters, the cross-sectional SEM images of multilayer Bragg reflector show smooth and clear interfaces which are important criterias for the SMR devices.
The frequency responses of SMR show distinct resonant
phenomenon near 1.4GHz and 2.5GHz with an excellent noise
restraint. It indicates that the Bragg reflector made of Mo/SiO2 is suitable for the fabrication of SMR devices. Furthermore, the two resonant frequencies show that the bulk acoustic wave transmit in two different way, the longitudinal mode and the shear mode. The cause of the shear mode vibration is the tilt of the c-axis of AlN thin
films. For c-axis inclined AlN thin films, the longitudinal and the shear mode vibration both exist, and the acoustic wave propagates with different acoustic velocities along the c-axis inclined AlN.
目次 Table of Contents
摘要 I
目錄 III
圖表目錄 VI
第一章 前言 1
第二章 理論分析 5
2.1 AlN結構與特性 5
2.2 鉬(Molybdenum, Mo)結構與特性 6
2.3 二氧化矽(SiO2)結構與特性 6
2.4 壓電理論 6
2.4.1 壓電效應 7
2.5 反應性射頻磁控濺鍍原理 8
2.5.1 輝光放電 8
2.5.2 磁控濺射 9
2.5.3 射頻濺射 9
2.5.4 反應性濺射 10
2.6 SMR的理論 11
2.6.1 SMR的特點 11
2.6.2 SMR的基本設計 12
2.7 SMR的參數性質 14
2.7.1 機電偶合係數Kt2,eff之測量 15
2.7.2 品質因數Q之測量 15
2.8 梯型濾波器(Ladder type filter)原理 16
第三章 實驗 17
3.1 基板的清洗 17
3.2 射頻濺鍍系統與薄膜沈積 18
3.3 直流濺鍍系統與薄膜沈積 19
3.4 黃光微影製程 19
3.5 X光繞射(X-ray diffraction, XRD)分析 20
3.6 掃描式電子顯微鏡(Scanning electron microscopy, SEM)分析 21
3.7 原子力顯微鏡(Atomic force microscopy, AFM)分析 21
3.8 傅利葉轉換紅外光光譜儀(Fourier transform infrared spectrometer, FTIR)分析 22
3.9 SMR的製作 23
3.9.1 反射層的製作 23
3.9.2 壓電層的製作 25
3.10 本研究所採用之元件參數 26
3.11 元件測量 26
第四章 結果與討論 27
4.1 反射層的探討 27
4.1.1 原子力顯微鏡分析 28
4.1.2 基板溫度之影響 28
4.1.3濺鍍功率之影響 29
4.1.4 反射層薄膜的檢驗 29
4.1.5 最低粗糙度濺鍍參數之反射層 29
4.2 壓電層的探討 30
4.3 SMR之量測結果 30
4.4 SMR之1.4GHz頻率驗證 31
4.4.1 調變反射層最上層的高聲阻抗Mo之厚度 31
4.4.2 λ/2模式的SMR 32
4.5 剪向模式之體聲波 32
4.5.1 體聲波的傳遞模式 32
4.5.2 使用基板傾斜(tilted)濺鍍壓電層 33
4.5.3 傾斜模式(tilted mode)SMR量測 33
4.6 三階Ladder type濾波器量測 34
第五章 結論 35
參考文獻 37
圖1-1 SMR元件的(a)側視面,(b)上視圖 44
圖1-2 體聲波元件的類型 45
圖2-1 AlN的晶體構造:(a)變形四面體結構,(b)單位晶胞圖,(c)纖鋅礦之立體結構示意圖 46
圖2-2 壓電效應:(a)正壓電效應,(b)逆壓電效應 47
圖2-3 直流輝光放電結構與電位分佈圖 48
圖2-4 平面型圓形磁控之結構圖 49
圖2-5 平面磁控放電之剖面圖 49
圖2-6 反應性濺射之模型 50
圖2-7 波長為λ/2型態的SMR 51
圖2-8 阻抗(Zload)與反射層層數(N)的關係圖 52
圖2-9 波長為λ/4型態的SMR 53
圖2-10 梯型濾波器結構圖和工作原理 54
圖3-1 射頻磁控濺鍍系統 55
圖3-2 射頻磁控濺鍍系統操作之流程圖直流磁控濺鍍系統 56
圖3-3 直流磁控濺鍍系統 57
圖3-4 舉離法流程圖 58
圖3-5 SMR製作流程圖 59
圖3-6 SMR三道光罩實圖 60
圖4-1 不同溫度下,Mo之AFM圖 61
圖4-2 不同沈積溫度下,SiO2之AFM圖 62
圖4-3 Mo的表面粗糙度對沈積溫度之關係圖 63
圖4-4 SiO2的表面粗糙度對沈積溫度之關係圖 63
圖4-5 不同沈積功率下,Mo之AFM圖 64
圖4-6 不同沈積功率下,SiO2之AFM圖 65
圖4-7 Mo的表面粗糙度對沈積功率之關係圖 66
圖4-8 SiO2的表面粗糙度對沈積功率之關係圖 66
圖4-9 最低粗糙度所濺鍍Mo薄膜之XRD圖 67
圖4-10 SiO2標準樣品的FTIR 68
圖4-11 最低粗糙度SiO2的FTIR 68
圖4-12 (a)1對,(b)2對 SiO2/Mo反射層之表面SEM圖 69
圖4-13 (a)3對,(b)4對 SiO2/Mo反射層之表面SEM圖 70
圖4-14 (a)1.5對,(b)2.5對 SiO2/Mo反射層之表面SEM圖 71
圖4-15 (a)3.5對,(b)4.5對 SiO2/Mo反射層之表面SEM圖 72
圖4-16 氮化鋁XRD圖 73
圖4-17 非沿著正c-軸成長之壓電層 73
圖4-18 1.5對SiO2/Mo反射層之SMR諧振響應 74
圖4-19 2.5對SiO2/Mo反射層之SMR諧振響應 74
圖4-20 3.5對SiO2/Mo反射層之SMR諧振響應 75
圖4-21 4.5對SiO2/Mo反射層之SMR諧振響應 75
圖4-22 反射層最上層的高聲阻抗Mo厚度調變為設計之λ/4結構的1/2厚度 76
圖4-23 反射層最上層的Mo調變為1/2厚度之SMR諧振響應 76
圖4-24 反射層最上層的高聲阻抗Mo厚度調變為設計之λ/4結構的1/4厚度 77
圖4-25 反射層最上層的Mo調變為1/4厚度之SMR諧振響應 77
圖4-26 λ/2結構的SMR 78
圖4-27 2對反射層之λ/2結構的SMR諧振響應 78
圖4-28 非沿著正c-軸成長的壓電層之濺鍍示意圖 79
圖4-29 反應氣體分子之入射方向 80
圖4-30 傾斜試片製程 80
圖4-31 傾斜製程之氮化鋁XRD圖 81
圖4-32 傾斜製程之氮化鋁SEM圖 81
圖4-33 1.5對SiO2/Mo反射層之傾斜模式SMR諧振響應 82
圖4-34 2.5對 SiO2/Mo反射層之傾斜模式SMR諧振響應 82
圖4-35 3.5對SiO2/Mo反射層之傾斜模式SMR諧振響應 83
圖4-36 4.5對SiO2/Mo反射層之傾斜模式SMR諧振響應 83
圖4-37 1.5對SiO2/Mo反射層之傾斜模式Filter諧振響應;(a)S11,(b)S21 84

圖4-38 2.5對SiO2/Mo反射層之傾斜模式Filter諧振響應;(a)S11,(b)S21 85
圖4-39 3.5對SiO2/Mo反射層之傾斜模式Filter諧振響應;(a)S11,(b)S21 86
表一 常用的壓電材料 87
表二 AlN材料的一些基本特性 87
表三 反應性射頻濺鍍系統沈積氮化鋁薄膜之系統參數 88
表四 直流濺鍍系統沈積鉬和二氧化矽薄膜之系統參數 88
表五 JCPDS of AlN powder 89
表六 材料聲波特性參數 90
表七 Mo和SiO2之AFM最佳參數 90
參考文獻 References
[1] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators”, J. Vac. Sci. Technol. A 21, pp. 1-5, 2003.
[2] M. Link, M. Schreiter, J. Weber, R. Primig, D. Pitzer and R. Gabl “Solidly Mounted ZnO Shear Mode Film Bulk Acoustic Resonator for Sensing Applications in Liquids”, IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 53, No.2, pp. 492-496, 2006.
[3] S. H. Lee, K. H. Yoon and J. K. Lee, “Influence of Electrode Configurations on the Quality Factor and Piezoelectric Coupling Constant of Solidly Mounted Bulk Acoustic Wave Resonators”, J. Appl. Phys., vol. 92, pp. 4062-4069, 2002.
[4] P. B. Kirby, M. D. G. Potter, C. P. Williams and M. Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[5] C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[6] R. Jakkaraju, G. Henn, C. Shearer, M. Harris, N. Rimmer and P. Rich, “Integrated Approach to Electrode and AlN Depositions for Bulk Acoustic Wave (BAW) Devices”, Microelectronic Engineering, vol. 70, pp. 566-570, 2003.
[7] S. H. Lee and J. K. Lee, “Growth of Highly c-axis Textured AlN Films on Mo Electrodes for Film Bulk Acoustic Wave Resonators”, J. Vac. Sci. Technol. A 21, pp. 1-5, 2003.
[8] K. M. Lakin, J. R. Belsick, J. P. McDonald, K. T. McCarron, and C. W. Andrus, “Bulk Acoustic Wave Resonators and Filters for 2GHz”, IEEE MTT-S, pp. 1487-1490, 2002.
[9] K. W. Tay, C. L. Huang, L. Wu and M. S. Lin, “Performance Characterization of Thin AlN Films Deposited on Mo Electrode for Thin-Film Bulk Acoustic Wave Resonators”, Jpn. J. Appl. Phys., vol. 43, pp. 5510-5515, 2004.
[10] T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, IEEE Ultrason. Symp., pp. 945-948, 2002.
[11] R. Lanz, P. Carazzetti and P. Muralt, “Surface Micromachined BAW Resonators Based on AlN”, IEEE Ultrason. Symp., pp. 981-983, 2002.
[12] M. Hara and M. Esashi, “RF MEMS and MEMS Packaging”.
[13] H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[14] S. H. Kim and J. H. Kim, “Bragg Reflector Thin Film Resonator Using Aluminium Nitride Deposition by RF Sputtering”, IEEE Microwave Conference, Asia-pacific, pp.1535-1538., 2000.
[15] M. A. Dubois, “Thin Film Bulk Acoustic Wave Resonators: a technology-overview”, MEMSWAVE 03, France, 2003.
[16] K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, IEEE Ultrason. Symp., pp. 905-908, 1995.
[17] S. Pinkett, W. Hunt, B. Barber and P. Gammel, “Broadband Characterization of ZnO-Based Solidly Mounted Resonators”, IEEE International Freq. Con. Symp., pp. 15-19, 2002.
[18] H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp. 3455–3457, 2002.
[19] K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Freq. Con. Symp., pp. 876-881, 1998.
[20] H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[21] D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[22] S. H. Park, B. C. Seo, H. D. Park and G. Yoon, “Film Bulk Acoustic Resonator Fabrication for Radio Frequency Filter Applications”, Jpn. J. Appl. Phys., vol. 39, pp. 4115-4119, 2000.
[23] R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE Trans. on Ultrason., Ferroelect., and Freq. Contr., vol. 47, pp. 292-296, 2000.
[24] K. M. Lakin, “Thin Film Resonator Technology”, IEEE International Freq. Contr. Symp., pp. 765-778, 2005.
[25] K. M. Lakin, “Thin Film Resonator and Filters”, IEEE International Freq. Contr. Symp., pp. 895-906, 1999.
[26] R. Lanz, M. A. Dubois and P. Muralt, “Solidly Mounted BAW Filters for the 6 to 8 GHz Range Based on AlN Thin Films”, IEEE Ultrason. Symp., vol. 1, pp. 843-846, 2001.
[27] H. P. Loebl, C. Metzmacher, D. N. Peligrad, R. Mauczok, M. Klee, W. Brand, R. F. Milsom, P. Lok, F.van Straten, A. Tuinhout and J. W. LobeekC, “Solidly Mounted Bulk Acoustic Wave Filters for The GHZ Frequency Range”, IEEE Ultrason. Symp., vol. 1, pp. 919-923, 2002.
[28] S. H. Kim, J. H. Kim, H. D. Park and G. Yoon, “AlN-Based Film Bulk Acoustic Resonator Devices with W/SiO2 Multilayers Reflector for RF Bandpass Filter Application”, J. Vac. Sci. Technol. B, vol. 19, pp. 1164-1169, 2001.
[29] S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, IEEE International Freq. Contr. Symp., pp. 45-49, 2002.
[30] M. A. Dubois, P. Muralt, H. Matsumoto, and V. Plessky, “Solidly Mounted Resonator Based on Aluminum Nitride Thin Film”, IEEE Ultrason. Symp., pp. 909-912, 1998.
[31] W. E. Newell, “Face-Mounted Piezoelectric Resonators”, in Proc. IEEE, vol. 53, pp. 575-581, 1965.
[32] K. M. Lakin, “Development of Miniature Filters for Wireless Applications,” IEEE Trans. On Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[33] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama and T. Yamad, “Influence of Metal Electrodes on Crystal Orientation of Aluminum Nitride Thin Films”, Vacuum, vol. 74, pp. 699-703, 2004.
[34] F. Engelmark, J. Westlinder, G. F. Iriarte, I. Katardjiev and J. Olsson, “Electrical Characterization of AlN MIS and MIM Structures”, Trans. on IEEE Electron Devices, Vol. 50, pp. 1214-1219, 2003.
[35] M. A. Dubois and P. Muralt, “Stress and Piezoelectric Properties of Aluminum Nitride Thin Films Deposited onto Metal Electrodes by Pulsed Direct Current Reactive Sputtering”, J. App. Phys., vol. 89, pp. 6389-6395, 2001.
[36] 廖秋風,“氮化物粉體”,材料與社會,40, pp. 59-67, 1990.
[37] D. C. Bertolet, H. Liu and J. W. Rogers, “Initial Stages of AlN Thin-film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors”, J. Appl. Phys., vol. 75, pp. 5385-5390, 1994.
[38] S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda and A. Itoh,, “Reactive molecular beam epitaxy of aluminium nitride “, J. Vac. Sci. & Technol., vol. 16, pp. 990-993, 1979.
[39] 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,73, pp.45-46, 1993.
[40] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[41] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,pp. 425, 1990.
[42] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”,D. Van Nostrand CO., INC., Princeton, N. J. 1968, 706p.
[43] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp. 134, 1991.
[44] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp. 696-701, 1991.
[45] 王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所,碩士論文,(1995)。
[46] 蔡家龍,“製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所,碩士論文,(2000)。
[47] 歐天凡,“沈積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所,碩士論文,(2004)。
[48] 魏清梁,“固態微型諧振器之壓電層與反射層研製”,國立中山大學電機工程研究所,碩士論文,(2005)。
[49] H. P. Loebl, C. Metzmacher, R. F. Milsom, P. Lok, F.van Straten, A. Tuinhout, “RF Bulk Acoustic Wave Resonator and Filters”, Journal of Electrocernmics, vol. 12, pp. 109-118, 2004.
[50] V. M. Ristic, ”Principles of Acoustic Devices”, 新智,(1984) 3.
[51] M. Yim, D. H. Kim, D. Chai and G. Yoon “Effect of Thermal Annealing of W/SiO2 Multilayer Bragg Reflectors on Resonance Characteristics of Film Bulk Acoustic Resonator Devices with Cobalt Electrode”, J. Vac. Sci. Technol. A 22(3), pp. 465-471, May/Jun 2004.
[52] J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev and I. Petrov, “Dependence of the Electromechanical Coupling on the Degree of Orientation of c-Textured Thin A1N Films”, Trans. on IEEE Ultrason., Ferroelectr. Freq. Contr., vol. 51, No.10, 2004.
[53] Martin, M. –E. Jan, S. Rey-Mermet, D. Su and P. Muralt, “Shear Mode Coupling and Tilted Growth of AlN Thin Films in BAW Resonator,” IEEE Ultrason. Symp., pp. 333-336, 2005.
[54] M. Link, M. Schreiter, J. Weber, D. Pitzer, R. Primig, M. B. Assouar and O. Elmazria, “C-axis Inclined ZnO Films Deposited by Reactive sputtering using an additional blind for shear BAW devices”, IEEE Ultrason. Symp., pp. 202-205, 2005.
[55] Y. E. Lee, S. G. Kim, Y. J. Kim and H. J. Kim, “Effect of Oblique Sputtering on Microstructural Modification of ZnO Thin Films”, J. Vac. Sci. Technol. A 15(3), pp. 1194-1199, 1997.
[56] M. Link, M. Schreiter, J. Weber, R. Gabl, D. Pitzer, R. Primig and W. Wersing, “C-axis Inclined ZnO Films Shear-wave Transducers Deposited by Reactive Sputtering Using an Additional Blind”, J. Vac. Sci. Technol. A 24(2), pp. 218-222, 2006.
[57] J. Bjurstrom, G. Wingqvist and I. Katardjiev, “Synthesis of Textured Thin Piezoelectric AlN Films with a Nonzero mean tilt for the fabrication of shear mode resonator”, IEEE Ultrason. Symp., pp. 321-324, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code