Responsive image
博碩士論文 etd-0810108-144449 詳細資訊
Title page for etd-0810108-144449
論文名稱
Title
在正交分頻多工系統中利用新的低複雜度選擇性映射架構來降低峰均值功率比
Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDM Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-25
繳交日期
Date of Submission
2008-08-10
關鍵字
Keywords
正交分頻多工、選擇性映射、完美序列、峰均值功率比
Orthogonal frequency division multiplexing (OFDM), selected mapping (SLM), perfect sequence, peak-to-average power ratio (PAPR)
統計
Statistics
本論文已被瀏覽 5670 次,被下載 5
The thesis/dissertation has been browsed 5670 times, has been downloaded 5 times.
中文摘要
選擇性映射(Selected Mapping, SLM)架構通常被使用來降低正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)系統中的峰均值功率比(Peak-to-Average Power Ratio, PAPR)。在[21]中已經證明了傳統SLM架構的計算複雜度可以被大大的降低,其藉由轉換向量(Conversion Vector)來取代傳統反快速傅立葉轉換(Inverse Fast Fourier Transform, IFFT)運算,而轉換向量可以利用相位旋轉向量(Phase Rotation Vector)的反快速傅立葉轉換來得到。然而很不幸的,在[21]中的轉換向量其所對應的相位旋轉向量的每個元素通常沒有相等大小(Magnitude),因此位元錯誤率(Bit Error Rate, BER)的效能會遭受到顯著的變差。這個問題可以利用有完美序列(Perfect Sequence)形式的轉換向量來補救。之後我們提出了三種新的完美序列,而每種完美序列是由某一些基底向量與他們的循環位移(Cyclic-Shift)形式所組成。基於這些完美序列的獨特結構,我們提出了三個新的低複雜度SLM架構。由模擬結果得知,我們提出的架構其PAPR的效能跟傳統SLM架構相比雖然有些微的變差,但是這三個架構可以達到與傳統SLM架構相同BER的效能,而且其計算複雜跟傳統SLM架構相比均大大的降低。
Abstract
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vector in place of the conventional IFFT operations [21]. Unfortunately, however, the elements of these phase rotation vectors of the conversion vectors in [21] do not generally have an equal magnitude, and thus a significant degradation in the bit error rate (BER) performance is incurred. This problem can be remedied by utilizing conversion vectors having the form of a perfect sequence. This paper presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclic-shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve an identical BER performance and have a substantially lower computational complexity.
目次 Table of Contents
第一章 導論............................................................................1
1.0 引言..................................................................................1
1.1 研究動機..........................................................................2
1.2 論文架構..........................................................................2
第二章 正交分頻多工系統與峰均值功率比........................3
2.0 引言..................................................................................3
2.1 正交分頻多工系統的架構.............................................3
2.2 反離散傅立葉轉換的應用..............................................6
2.3 循環字首的應用..............................................................7
2.4 OFDM訊號的峰均值功率比...........................................8
第三章 常見的降低PAPR方法...........................................13
3.0 引言................................................................................13
3.1 常見的降低PAPR方法簡介與比較.............................13
3.2 傳統SLM架構................................................................15
3.3 Wang和Ouyang提出的低複雜度SLM架構...............16
第四章 三個基於完美序列的低複雜度SLM架構.............21
4.0 引言................................................................................21
4.1 採用的完美序列/轉換向量的結構...............................21
4.1.1 種類一的完美序列/轉換向量...................................22
4.1.2 種類二的完美序列/轉換向量...................................23
4.1.3 種類三的完美序列/轉換向量...................................24
4.2 提出的低複雜度SLM架構............................................26
4.2.1 提出的架構一(Proposed Scheme I, PS I)...........26
4.2.2 提出的架構二(Proposed Scheme II, PS II)..........28
4.2.3 提出的架構三(Proposed Scheme III, PS III)........28
4.3 提出的架構的複雜度分析............................................31
第五章 PAPR與BER的效能模擬分析..............................35
第六章 結論.........................................................................39
中英對照表..........................................................................40
全名縮寫對照表..................................................................43
參考文獻..............................................................................44
參考文獻 References
[1] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[2] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[3] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[4] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std 802.16-2004, Oct. 2004.
[5] D. Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun., vol. 47, no. 1, pp. 18-21, Jan. 1999.
[6] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998.
[7] D. Wulich, “Peak factor in orthogonal multicarrier modulation with variable levels,” Electron. Lett., vol. 32, no. 20, pp. 1859-1860, Sep. 1996.
[8] J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” Electron. Lett., vol. 38, no. 8, pp. 246-47, Feb. 2002.
[9] A. E. Jones, T.A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme,” Electron. Lett., vol. 30, no. 22, pp. 2098-2099, Dec. 1994.
[10] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE. Trans. Info. Theory, vol. 45, no. 7, pp. 2397-2417, Nov. 1999.
[11] K. Patterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE. Trans. Info. Theory, vol. 46, no. 1, pp. 104-120, Jan. 2000.
[12] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peak-to-average power ratio in multicarrier communication,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37-44, Jan. 2000.
[13] J. A. Davis and J. Jedwab, “Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes,” Electron. Lett., vol. 33, no. 4, pp. 267-268, Feb. 1997.
[14] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes with low peak-to-average power ratios,” IEEE Trans. Info. Theory, vol. 46, no. 6, pp. 1974-1987, Sep. 2000.
[15] C. V. Chong and V. Tarokh, “A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ration,” IEEE. Trans. Info. Theory, vol. 47, no. 7, pp. 3025-3029, Nov. 2001.
[16] T. Ginige, N. Rajatheva, and K. M. Ahmed, “Dynamic spreading code selection method for PAPR reduction in OFDM-CDMA systems with 4-QAM modulation,” IEEE. Commun. Lett., vol. 5, no. 10, pp. 408-410, Oct. 2001.
[17] K.Yang and S. Chang, “Peak-to-average power control in OFDM using standard arrays of linear block codes,” IEEE. Commun. Lett., vol. 7, no. 4, pp. 174-176, Apr. 2003.
[18] S. B. Slimane, “Reducing the peak-to-average power ratio of OFDM signals through precoding,” IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 686-695, Mar. 2007.
[19] R. W. Baüml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056-2057, Oct. 1996.
[20] M. Breiling, S. H. Müller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE. Commun. Lett., vol. 5, pp. 239-241, Jun. 2001.
[21] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
[22] S. J. Heo, H. S. Noh, J. S. No, and D. J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804-808, Dec. 2007.
[23] D. W. Lim, J. S. No, C. W. Lim, and H. Chung, “A new SLM OFDM scheme with low complexity for PAPR reduction,” IEEE Signal Process. Lett., vol. 12, no. 2, pp. 93-96, Feb. 2005.
[24] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335-341, Sep. 2004.
[25] S. H. Müller and J. B. Huber, “OFDM with reduced pear-to-average power ratio by optimum combination of partial transmit sequence,” Electron. Lett., vol. 33, pp. 368-369, Feb. 1997.
[26] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Commun., vol. 45, no. 9, pp. 333-338, Sep. 1999.
[27] L. J. Cimini Jr. and N. R. Sollenberger, “Peak-to-average power ration reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000.
[28] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol. 36, no. 14, pp. 1226-1228, Jul. 2000.
[29] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001.
[30] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887-890, Nov. 2004.
[31] L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR reduction of an OFDM signal by use of PTS with low computational complexity,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83-86, Mar. 2006.
[32] Y. Xiao, X. Lei, Q. Wen, and S. Li, “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680-683, Oct. 2007.
[33] T. Wattanasuwakull and W. Benjapolakul, “PAPR reduction for OFDM transmission by using a method of tone reservation and tone injection,” in Proc. 2005 Inform., Commun. Sig. Process., Dec. 2005, pp. 273-277.
[34] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, pp. 258-268, Sep. 2003.
[35] R. van Nee and R. Prasad, OFDM for Wireless Multimedia Communications, Boston: Artech House, 2000.
[36] C. Tellambura, “Computation of the continue-time PAR of an OFDM signal with BPSK subcarriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185-187, May 2001.
[37] R. L. Frank and S. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inform. Theory, vol. IT-8, pp. 381-382, Oct. 1962.
[38] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 531-532, Jul. 1972.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.190.156.80
論文開放下載的時間是 校外不公開

Your IP address is 18.190.156.80
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code