Responsive image
博碩士論文 etd-0810110-014346 詳細資訊
Title page for etd-0810110-014346
論文名稱
Title
高雄元宵節高空煙火施放對環境空氣品質之影響
Influences of Firework Displays on Ambient Air Quality during the Lantern Festival in Kaohsiung City
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
209
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-09
繳交日期
Date of Submission
2010-08-10
關鍵字
Keywords
受體模式、富集因子、主成份分析、煙火物化指紋、滴定效應、高空煙火施放、空氣品質監測
titration effect, principal component analysis (PCA), physicochemical properties, enrichment factor (EF), CMB receptor modeling, firework displays, air quality monitoring
統計
Statistics
本論文已被瀏覽 5724 次,被下載 1464
The thesis/dissertation has been browsed 5724 times, has been downloaded 1464 times.
中文摘要
近年來,台灣地區各種傳統民俗節慶活動已越來越受重視,而這些節慶活動中,不乏各式高空煙火的施放,其中高雄元宵節高空煙火施放為每年台灣地區民俗節慶中規模最盛大的活動之一,每年吸引大批民眾前往觀賞,故瞭解高雄元宵節高空煙火施放對環境空氣品質之影響及建立本土慶典活動對大氣環境中空氣污染物之貢獻量實有其必要性。
本研究於2009年2月9-12日於高雄元宵節高空煙火施放點下風處,設置兩個測站同步進行氣態污染物之連續監測及懸浮微粒採樣,另於自行設計之燃燒反應箱內進行高空煙火藥燃燒實驗,並採集煙火藥燃燒生成之懸浮微粒,將採集之懸浮微粒樣本進行質量濃度、金屬元素成份、水溶性離子成份及碳成份分析,以瞭解其物化指紋特徵,最後利用主成份分析法、富集因子分析法及化學質量平衡受體模式,探討高雄元宵節期間高空煙火施放對環境空氣品質之影響。
本研究發現元宵節期間高空煙火施放時段下風處測站NO、NO2、CO、O3濃度皆受到顯著影響,其中NO之濃度變化最為劇烈,最高可達背景濃度之8.8倍,而2月9-12日三天晚間雖有滴定效應發生,但高空煙火施放後NO2與O3之相關係數由中度相關上升至高度相關,說明高空煙火施放對滴定效應有促進作用。就有機性氣態污染物而言,高空煙火施放後短時間內NMHC及甲苯濃度亦出現濃度高峰,其中甲苯於濃度高峰期間平均濃度可達背景濃度之2.2~4.1倍。
就懸浮微粒而言,本研究發現PM2.5中Mg、K、Sr、Pb等金屬元素濃度上升最為明顯,影響最顯著的2月10日四種金屬元素成份濃度皆大於背景時段之10倍以上。此外,高雄港非煙火施放時段受海鹽影響Cl-/Na+比值接近1,但高空煙火施放時段Cl-/Na+比值顯著上升,Cl-/Na+比值皆接近3,大部份Cl-主要來自煙火燃燒釋放之氯鹽,同時OC/EC比值亦明顯上升,最高可達2.8。
除高雄元宵節期間樣本之物化特性分析外,本研究亦於自行設計之燃燒反應箱內採樣及分析煙火藥燃燒生成之懸浮微粒。研究結果顯示煙火藥高溫燃燒生成之懸浮微粒成份以K、Mg、Cl-、OC(>10%)為主,而 Cl-/Na+比值介於15.0~23.4之間,OC/EC比值介於2.9~3.2之間,故高空煙火施放時段大氣懸浮微粒中Cl-/Na+及OC/EC比值的上升,可視為高空煙火污染之重要指標。
最後,本研究以主成份分析法篩選主要污染來源,以富集因子分析法檢驗煙火藥微粒物化指紋特徵及利用化學質量平衡受體模式推估高空煙火施放之貢獻率。本研究結果顯示高空煙火施放時段懸浮微粒主要污染來源依序為高空煙火源、車輛及船舶尾氣排放、土壤及道路揚塵逸散、海水飛沫等四大類,而高空煙火源排放貢獻量以2月10日最大,當天高空煙火源於測站A之懸浮微粒貢獻率達25.2%,而測站B之懸浮微粒貢獻率達16.6%。
Abstract
In recent years, the celebration activities of various types of folk-custom festivals in Taiwan have already been getting more and more attention from civilians. Festivities throughout the whole island are traditionally accompanied by loud and brightly colored firework displays. Among these activities, the firework display during the Chinese Lantern Festival in Kaohsiung City is one of the largest festivals in Taiwan every year. Therefore, it is important to investigate the influences of firework displays on ambient air quality during the Chinese Lantern Festival in Kaohsiung City.
Field measurement of ambient gaseous pollutants and particulate matter (PM) was conducted on February 9-12, 2009, the Chinese Lantern Festival, in Kaohsiung City. Moreover, three kinds of firework powders obtained from the same factory producing Kaohsiung Lantern Festival fireworks were burned in a combustion chamber to determine the physicochemical properties of firework aerosols. Metallic elements were analyzed with an inductively coupled plasma-atomic emission spectrometer (ICP-AES). Ionic species and carbonaceous contents in the PM samples were analyzed with an ion chromatography (IC) and an elemental analyzer (EA), respectively. Finally, the source identification and apportionment of PM were analyzed by principal component analysis (PCA), enrichment factor (EF), and receptor modeling (CMB).
For inorganic gaseous pollutants, the concentration peaks of NO, NO2, O3, CO were observed during the firework periods, and the concentration peak of NO was approximately 8.8 times higher than those during the non-firework periods. This study further revealed that, even at nighttime, ambient O3 could be reduced dramatically during the firework periods, whenas NO2 concentration increased concurrently, due to titration effects resulting from the prompt reaction of NO with O3 to form NO2 and O2. For organic gaseous pollutants, the concentration peak of toluene during the firework periods was approximately 2.2-4.1 times higher than those during the non-firework periods.
Several metallic elements of PM during the firework display periods were obviously higher than those during the non-firework periods. On February 10, the concentrations of Mg, K, Pb, and Sr in PM2.5 were 10 times higher than those during the non-firework periods. Besides, the Cl-/Na+ ratio was slightly smaller than 1 in Kaohsiung Harbor, but it was approximately 3 during the firework display periods since Cl- came form chlorine content in firework aerosols at this time. Moreover, OC/EC ratio increased up to 2.8.
In addition to the analysis of gaseous pollutants and PM during the Chinese Lantern Festival in Kaohsiung City, this study burned firework powders in a self-designed combustion chamber to measure the physicochemical properties of firework aerosols. In the results, K, Mg, Cl-, OC were major contents (<10%) in the aerosols produced from the burning firework powders. Moreover, Cl-/Na+ and OC/EC ratio were 15.0~23.4 and 2.9~3.2, respectively. Consequently, Cl-/Na+ and OC/EC ratio can be used as two important indicators of firework displays.
Results obtained from PCA and CMB receptor modeling showed that the major sources of aerosols during the firework display periods were firework displays, motor/diesel vehicle exhanst, soil dusts, and marine aerosols. Besides, the firework displays on February 10 contributed approximately 25.2% and 16.6% of PM10 at two sampling sites, respectively.
目次 Table of Contents
謝誌………………………………………………………………….. I
中文摘要…………………………………………………………….. III
英文摘要...………………………………………………………....... V
目錄…….………………………………………….…………............ VII

表目錄..….………………………………………….……….............. X
圖目錄….…………………………………………………………..... XII
第一章 前言………………………………………………….……. 1-1
1-1 研究緣起……………………………………...……...…….. 1-1
1-2 研究目的…………………………………………..……….. 1-2
1-3 研究範圍及架構…………………………………..……….. 1-2
第二章 文獻回顧….………………………………………………. 2-1
2-1懸浮微粒之來源及物化特性………...…………..…………. 2-1
2-1-1 懸浮微粒污染來源及生成機制………….…………… 2-1
2-1-2 金屬元素成份特性…………………….……………… 2-3
2-1-3 水溶性離子成份特性……….………………………… 2-4
2-1-4 碳成份特性………………………..……....................... 2-5
2-2 氣態污染物之特性………….……………………………... 2-7
2-3 高空煙火之成份與環境空氣污染…………….………..…. 2-9
2-3-1 煙火藥之分類與燃燒速率………………………...….. 2-9
2-3-2 不同功能煙火之成份與反應機制…….…………….... 2-9
2-3-3 高空煙火污染物對大氣環境之影響…………………. 2-14
2-3-4 煙火污染物對人體健康之影響………………………. 2-29
2-6 紫外線光學遙測技術之原理與應用……….…………....... 2-31
2-7 污染源解析模式之應用………….……………………...… 2-34
第三章 研究方法………………………………………………….. 3-1
3-1 採樣規劃…………………..………………………….…..... 3-1
3-1-1 採樣地點規劃…………………………………………. 3-1
3-1-2 採樣時間規劃…………………………………………. 3-4
3-1-3高空煙火物化指紋實驗……………….………………. 3-4
3-2採樣方法與原理……………………………………………. 3-5
3-2-1懸浮微粒採樣方法及原理……………….……………. 3-5
3-2-2氣態污染物採樣方法及原理……………………….…. 3-8
3-3 化學成份分析方法………………………………………… 3-14
3-3-1 質量濃度分析方法……………………………………. 3-14
3-3-2 金屬元素成份分析方法………………………………. 3-14
3-3-3 水溶性離子成份分析方法……………………………. 3-15
3-3-4 碳成份分析方法.……………………………………… 3-16
3-4 品保與品管………...…….……………………...…………. 3-17
3-4-1 採樣方法之品保與品管……………………………..... 3-17
3-4-2 分析方法之品保與品管………………………………. 3-20
3-4-3 氣態污染物分析儀器校正及檢查……………………. 3-22
3-5 高空煙火之污染源解析方法……………………………… 3-24
3-5-1 主成份分析法………………….…………………….... 3-24
3-5-2 富集因子分析法………………………………............. 3-26
3-5-3 化學質量平衡受體模式………………………............. 3-27
第四章 結果與討論….…...................................………………….. 4-1
4-1 高空煙火施放期間地面風場變化分析………………..….. 4-1
4-2 高空煙火施放期間氣態污染物濃度變化分析…...………. 4-3
4-2-1 無機性氣態污染物濃度變化分析…….……………… 4-5
4-2-2 有機性氣態污染物濃度變化分析………..….……….. 4-11
4-2-3 氮氧化物與臭氧滴定效應之探討……….………….... 4-13
4-3 高空煙火施放期間懸浮微粒質量濃度分析……………… 4-16
4-3-1 懸浮微粒質量濃度連續監測結果………….……...…. 4-16
4-3-2 懸浮微粒質量濃度各時段變化趨勢…….……...……. 4-19
4-4 高空煙火施放期間懸浮微粒化學特性分析……………… 4-24
4-4-1 金屬元素成份分析結果…………………...….………. 4-24
4-4-2 水溶性離子成份分析結果……………………………. 4-33
4-4-3 碳成份分析結果………………...…………….………. 4-41
4-5 高空煙火污染源指紋暨貢獻量探討…………...…………. 4-46
4-5-1 高空煙火微粒指紋特徵探討…………………………. 4-47
4-5-2 主成份分析法判別主要污染源種類.………………… 4-53
4-5-3 富集因子解析化學成份與煙火源之關聯性…………. 4-62
4-5-4 受體模式解析煙火源之貢獻率…………………….… 4-71
第五章 結論與建議……………………..………………………… 5-1
5-1 結論………………………...……………………………... 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻........................................................................................ R-1
附錄A分析方法之品保品管……………………………………… A-1
附錄B高雄元宵節期間懸浮微粒化學成份彙整表………........... B-1
附錄C高空煙火藥燃燒釋放懸浮微粒排放係數彙整表……….. C-1
附錄D化學質量平衡受體模式解析結果彙整表……….……….. D-1
參考文獻 References
Alexandre, J., Audrey, S., Tom, K., Michel, F., Ewa, D., Valbona, C., David, M., Ren&eacute;, S., R&eacute;al, D., Alain, M., and Jeffrey, B., “Characterisation of particulate exposure during fireworks displays,” Atmospheric Environment, Available online 21 December 2009.
Allen, A.G., Nemitz, E., Shi, J.P., Harrison, R.M., and Greenwood, J.C., “Size distributions of trace metals in atmospheric aerosols in theUnited Kingdom,” Atmospheric Environment, 35(27), 4581-4591, 2001.
Appel, B.R., Atmospheric sample analysis and sampling artifacts. In: Willeke, K., Baron, P.A., eds. Aerosol measurement : principles, techniques, and applications. New York, NY. Van Nostrand Reinhold : 233-259, 1993.
Attri, A.K., Kumar, U., and Jain, V.K., “Microclimate: formation of ozone by fireworks,” Nature, 411(6841), 1015-1015, 2001.
Barman, S.C., Singh, R., Negi, M.P.S., and Bhargava, S.K., “Ambient air quality of Lucknow City (India) during use of fireworks on Diwali Festival,” Environmental monitoring and assessment, 137, 495-504, 2008.
Biteau. H., Fuentes, A., Marlair. G., and Torero, J.L., “The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture” Experimental Thermal and Fluid Science, 34(3), 282-289, 2010.
Charles, L.B., Rajot, J.L., and Moustapha A., “Transport of soil and nutrients by wind in bush fallow land and traditionally managed cultivated fields in the Sahel,” Geoderma, 109, 19-39, 2002.
Cheng, Y., Lee S.C., Ho, K.F., Chow J.C., Watson J.G., Louie P.K.K., Cao J.J., and Hai, X., “Chemically-speciated on-road PM2.5 motor vehicle emission factors in Hong Kong,” The Science of the Total Environment, 408, 162-1627, 2010.
Clark, H., “Light blue touch paper and retire,” Atmospheric Environment, 31(17), 2893-2895, 1997.
Colbeck, I. and Chen, M.C., “Ambient aerosol concentrations at a site in SE England during Bonfire Night 1995,” Journal of Aerosol Science, 27(Supplement 1), S449-S450, 1996.
Cyrys, J., Stolzel, M., Heinrich, J., Kreyling, W.G., Menzel, N., Wittmaack, K., Tuch, T., and Wichmann, H.E., “Elemental composition and sources of fine and ultrafine ambient particles in Erfurt, Germany.” The Science of the Total Environment, 305, 143-156, 2003.
Dasch, J.M. and Cadle, S.H., “Atmospheric carbon particles in Detroit urban area : wintertime sources and sinks.” Aerosol Science and Technology, 10, 237-248, 1989.
Drewnick, F., Hings, S.S., Curtius, J., Eerdekens, G., and Williams, J., “Measurement of fine particulate and gas-phase species during the New Year’s fireworks 2005 in Mainz, Germany,” Atmospheric Environment , 40, 4316-4327, 2006.
Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition, John Willey & Sons, Inc., New York, 3-4, 1999.
Ikegami, M., Okada, K., Zaizen, Y., Makino, Y., Jensen, J.B., Gras, J.L., and Harjanto, H., “Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires,” Atmospheric Environment, 35, 4237-4243, 2001.
Kamp, D.V.D., McKendry, I., Wong, M., and Stull, R., “Lidar ceilometer observations and modeling of a fireworks plume in Vancouver, British Columbia,” Atmospheric Environment , 42, 7174-7178, 2008.
Kerminen V.M., Pakkanen T.A., and Hillamo R.E., “Interactions Between Inorganic Trace Gases and Supermicrometer Particles at a Coastal Site, Atmospheric Environment, 31(17), 2753-2765, 1997.
Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S., and Kulshrestha, M.J., “Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali Festival in India,” Atmospheric Environment, 38(27), 4421-4425, 2004.
Lin, J.J., “Characterization of water-soluble ion species in urban particles,” Environment International, 28, 55-61, 2002.
Mamane, Y., Steven, R.K., and Dzubay, T.Y., “On the sources of fine and coarse carbon particles in the Great Lakes.” Journal of Aerosol Science, 21, S353-S356, 1990.
Manahan, S.E., Environmental Chemistry, 8nd Edition, Boca Raton, Fla. : CRC Press, 2005.
McMurry P.H. and Wilson, J.C., “Droplet phase (heterogeneous) and gas phase (homogeneous) contribution to secondary ambient aerosol formation as functions of relative humidity.” Journal of Geophysical Research, 88, 5101-5108, 1983.
Moreno, T., Querol, X., Alastuey, A., Cruz Minguillon, M., Pey, J., Rodriguez, S., Vicente Miro, J., Felis, C., and Gibbons, W., “Recreational atmospheric pollution episodes: Inhalable metal- iferous particles from firework displays,” Atmospheric Environment, 41(5), 913-922, 2007.
Perry, K.D., “Effects of outdoor pyrotechnic displays on the regional air quality of Western Washington State,” Journal of Air & Waste Management Association 49, 146-155, 1999.
Pires, J.C.M., Pereira, M.C., Alvim-Ferraz, M.C.M., and Martins, F.G., “Identification of redundant air quality measurements through the use of principal component analysis,” Atmospheric Environment, 43, 3837-3842, 2009.
Ravindra, K., Mor, S., and Kaushik, C.P., “Short-term variation in air quality associated with firework events: A case study,” Journal of Environmental Monitoring, 5, 260-264, 2003.
Seinfeld, J.H. and Pandis, S.N., Atmospheric chemistry and physics : From Air Pollution to Climate Change. Wiley-Interscience, New York , 1998.
Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T., Nakao, S., and Tanaka, S., “Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China,” Atmospheric Environment, 43, 2911-2918, 2009.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmom, L.G., Shao, M. and Slanina, S., “Source apportionment of PM2.5 in Beijing by positive matrix factorization,” Atmospheric Environment, 40, 1526-1537, 2006.
Steinhauser, G., Sterba, J.H., Foster, M., Grass, F., and Bichler, M., “Heavy metals from pyrotechnics in New Years Eve snow,” Atmospheric Environment, 42, 8616–8622, 2008.
Steinhauser, G. and Klapotke, T.M., “Using the Chemistry of Fireworks To Engage Students in Learning Basic Chemical Principles: A Lesson in Eco-Friendly Pyrotechnics,” Journal of Chemical Education , 87(2), 150-156, 2010.
Sturman, B.T., “On the emitter of blue light in copper-containing pyrotechnic flames”, Propellants, Explosives, Pyrotechnics, 31, 1, 2006.
Susaya, J., Kima, K.H., Ahn, J.W., Jung, M.C., and Kang, C.H., “BBQ charcoal combustion as an important source of trace metal exposure to humans,” Journal of Hazardous Materials, 176, 932-937, 2010.
Tandon, A., Yadav, S., and Attri, A.K., “City-wide sweeping a source for respirable particulate matter in the atmosphere,” Atmospheric Environment, 42, 1064-1069, 2008.
Tribelhorn, M.J., Blenkinsop, M.G., and Brown, M.E., “Combustion of some iron-fuellwd binary pyrotechnic systems”, Thermochimica Acta, 256, 291-307, 1995.
Vecchi, R., Bernardoni, V., Cricchioa, D., Alessandroa, A.D., Fermob, P., Lucarellic, F., Navad, S., Piazzalungab, A., and Vallia, G., “The impact of fireworks on airborne particles,” Atmospheric Environment, 42, 1121-1132, 2008.
Wall S.M., Johnand, W., and Ondo, J.L., “Measurement of aerosol size distributions for nitrate and major ionic species.” Atmospheric Environment, vol. 22, 1649-1656, 1988.
Wallace, L.A., “Major sources of benzene exposure,” Environmental Health Perspectives, 82, 165-169, 1989.
Wang, Y.F., Huang, K.L., Li, C.T., Mi, H.H., Luo, J.H., and Tsai, P.J., “Emissions of fuel metals content from a diesel vehicle engine,” Atmospheric Environment, 37, 4637-4643, 2003.
Wang, Y., Zhuang, G., Tang, A., Yuan, H., Sun, Y., Chen, S., and Zheng, A., “The ion chemistry and the source of PM2.5 aerosol in Beijing,” Journal of Hazardous Materialst, 39, 3771-3784, 2005.
Wang, Y., Zhuang, G., Xu, C., and An, Z., “The air pollution caused by the burning of fireworks during the lantern festival in Beijing,” Atmospheric Environment, 41(2), 417-431, 2007.
Watson, J.G. and Chow, J.C., “Clear Sky Visibility as a Challenge for Society,” Annual Review of Energy and the Environment, 19, 241-266, 1994.
Wehner, B., Wiedensohler, A., and Heintzenberg, J., “Submicrometer aerosol size distributions and mass concentration of the millennium fireworks 2000 in Leipzig, Germany,” Journal of Aerosol Science, 31(12), 1489-1493, 2000.
Williams. F.A., Encyclopedia of Physical Science and Technology, 315-338, 2004.
Zhuang H., Chen, C.K., Fang, M., and Wexler, A.S., “Formation of Nitrate and Non-sea-salt Sulfate on Coarse Particles,”Atmospheric Environment, Vol. 33, 4223-4233, 1999b.
邵承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2001。
樓基中、袁中新,“高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市環保局研究報告,1995。
底宗鴻,“高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討”,國立中山大學環境工程研究所碩士論文,2008。
吳義林、蔡德明,“高屏地區大寮測站PM10與PM2.5之組成份特徵研究”,一九九八年氣膠研討會論文集,1998。
張榕書,“1994-2004 &#63886;台灣近地面臭氧特性分析”,國立中央大學大氣物理研究所碩士論文,2006。
張順欽、李崇德,“元宵蜂炮對空氣品質衝擊之研究”,中華民國環境工程學會空氣污染控制技術研討會,高雄,2007。
林正芳,“污水處理廠臭味及揮發性有機物逸散特性之研究, ”NSC-88-EPA-Z-002-002,1998。
彭彥彬,“南台灣地區垂直臭氧剖面中尺度模式模擬研究”,國立中山大學環境工程研究所博士論文,2007。
傅慰孤,“廢棄火炸藥處理最佳化研究”,元智大學機械工程研究所碩士論文,2000。
李昂,“煙火化學-原理與應用”,科技圖書公司出版,1990。
李德綸,“鹽水蜂炮等民俗活動對空氣品質之影響”,國立成功大學環境工程研究所碩士論文,2006。
李利平、張寧、王振、萬東、周圍,“春節燃放爆竹對大氣氣溶膠水溶性無機離子的影響”,城市環境與城市生態,21(5),37-41,2008。
李宗璋,“金廈地區懸浮微粒物化特性分析及污染源解析探討”,國立中山大學環境工程研究所碩士論文,2009。
蔡宗憲,“地下水中過氯酸鹽生物分解之研究”,朝陽科技大學環境工程與管理系碩士論文,2005。
朱長星、葉迎華、沈瑞琪、項汛,“ZrMg系煙火劑發光光譜特性研究”,含能材料期刊,2(13),118-120,2005。
洪盛茂、焦荔、祈國傳、何曦、陳超、孫鴻良、徐鴻,“春節期間煙花爆竹對顆粒物濃度的影響”,第四屆海峽兩岸氣膠技術研討會,高雄,2007。
周文傑,“燃燒金紙與拜香所產生氣態污染物及飛灰中金屬成份之分布”,國立成功大學環境工程研究所碩士論文,2007。
周忠義,“室外空氣中揮發性有機物之毒性探討”,國立成功大學環境工程研究所碩士論文,2002。
陳恭府,“超低硫柴油摻配生質柴油之油品特性及污染排放分析”,國立中山大學環境工程研究所碩士論文,2005。
陳汎凌、尤思喻、柳中明、程萬里,“東亞對流層臭氧空間分布特徵與氣候因子之相關性探討”,大氣科學,36(2),127-146,2008。
熊映美、楊燦、陳秋蓉、王琳、陳昱林、顏世雄,“台灣爆裂物製造勞工肝腎功能之調查”, 勞工安全衛生研究季刊,16(4),358-369,2008。
袁中新、黃明和、林國豐、施志恆,“開徑式光學遙測法與定址式抽氣量測法之實測比較”,2005年環境分析化學研討會論文,2005。
袁中新、蔡協宏、林勳佑、黃明和、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,國科會研究計畫,NSC 94-EPA-Z-110-003,2005。
邱嘉斌,“台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成及污染源貢獻量之研究”,國立中興大學環境工程研究所博士論文,2005。
葉曉紅、桂家祥、周衛江、劉捷光,“煙花爆竹環保項目分析與研究”,環境科學與技術,27(3),49-51,2004。
薛朝安,“台灣中部地區高臭氧事件之探討”,東海大學環境科學與工程學系碩士論文,2007。
盧彥勳,“大氣中微粒污染與重金屬成分之模擬與分析”,東海大學環境科學與工程學系碩士論文,2009。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
黃堯聖,“大氣懸浮微&#63993;化學組成及&#63789;源推估”,輔英科技大學環境工程與科學系碩士論文,2006。
曾國書,“屏東&#64038;會區粗細懸浮微&#63993;特性之研究”,國立屏東科技大學環境工程與科學系碩士論文,2006。
蔡瀛逸,“懸浮微粒之成份來源解析及管制策略探討”,高雄縣環保局計畫,2003。
溫志雄,“台灣一般大氣氣膠化學成份之連續監測及含水量之量測”,國立中央大學環境工程研究所碩士論文,2002。
唐永鑾、張鍚聲,“大氣污染與其防治”,科技圖書公司出版,1992。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code