Responsive image
博碩士論文 etd-0810110-113034 詳細資訊
Title page for etd-0810110-113034
論文名稱
Title
微尺寸指叉型質子交換膜燃料電池組之數值模擬
Numerical study for interdigitated micro-PEMFC stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-19
繳交日期
Date of Submission
2010-08-10
關鍵字
Keywords
指叉型、模擬
stack, PEMFC, interdigitated PEMFC, fuel cell stack, numerical simulation
統計
Statistics
本論文已被瀏覽 5656 次,被下載 0
The thesis/dissertation has been browsed 5656 times, has been downloaded 0 times.
中文摘要
由於指叉型流道(interdigitated flow channel)具備使反應氣體於擴散層內產生強制對流,使得指叉型質子交換膜燃料電池的流道設計擁有較佳的性能,因此本文針對指叉型質子交換膜燃料電池組(interdigitated PEMFC stack)進行數值模擬,並對照實驗及數值模擬之單顆指叉型質子交換膜燃料電池的數據,觀察並探討單顆指叉型質子燃料電池及雙顆指叉型質子交換膜燃料電池組結果之差異,進一步在不同溫度、壓力及體積流率等電池性能與極化曲線數值模擬結果。
本文所模擬之燃料電池組,其陽極以純氫氣為入口燃料,陰極則以空氣為入口燃料;改變五種不同操作溫度、五種不同壓力與五種不同體積流率倍率等,比較單電池的實驗數據及模擬結果並進行探討。電池的溫度與壓力變化會影響電化學反應速率,進而會影響到整個電池組的性能,本文也會針對不同的溫度、壓力及體積流率所得的電池性能加以探討。
Abstract
According to the previous experimental fact that an interdigitated single PEMFC has a better performance than other flow type single PEMFC, therefore this research is aimed to predict a two-cell stack interdigitated PEMFC via a numerical simulation. Investigation the effects of the cell temperature, the cell operating pressure, the fuel flow rate and the air flow rate are performed. This research can provide design reference for application of interdigitated PEMFC stack.
目次 Table of Contents
目錄

目錄………………………………………………… Ⅰ
圖目錄……………………………………………… Ⅳ
摘要………………………………………………… Ⅸ
Abstract.……………………………......................... Ⅹ
符號說明…………………………………………… XI
第一章 緒論……………………………………… 1
1.1 前言…………………………………………… 1
1.2 燃料電池的發展簡介………………………… 2
1.3 質子交換膜燃料電池的原理與應用………… 3
1.4 文獻回顧……………………………………… 6
1.5 研究目的……………………………………… 12
第二章 理論分析………………………………… 18
2.1 基本假設……………………………………… 18
2.2 數學模型…………………………………………………… 18
2.3 質子交換膜燃料電池的構造………………… 18
2.4 燃料電池的效率……………………………… 21
2.5 燃料電池的性能曲線………………………… 23
2.6 統御方程式…………………………………… 24
2.6.1 質量守恆…………………………………… 25
2.6.2 動量守恆…………………………………… 27
2.6.3 能量守恆…………………………………… 28
2.6.4 成份守恆…………………………………… 29
2.6.5 電量守恆…………………………………… 31
2.6.6 質子交換膜內部水含量…………………… 34
第三章 數值方法………………………………… 42
3.1 模型格點測試………………………………… 42
3.2 數值方法……………………………………… 42
3.2.1 通用守恆方程……………………………… 42
3.2.2 SIMPLEC演算法…………………………… 46
3.3 邊界條件……………………………………… 47
3.4 解題流程……………………………………… 52
第四章 結果與討論……………………………… 58
4.1 改變操作壓力對燃料電池的影響…………… 58
4.1.1 改變三種壓力對燃料電池的影響………… 58
4.1.2 改變五種壓力對燃料電池的影響.………… 59
4.2 改變操作溫度對燃料電池的影響…………… 60
4.2.1 固定壓力152kPa、改變三種溫度對燃料電池的影響…………………………………………………… 60
4.2.2 固定壓力101kPa、改變五種溫度對燃料電池的影響…………………………………………………… 61
4.3 改變體積流率對燃料電池的影響…………… 63
4.3.1 等比例之氫氣與空氣體積流率…………… 63
4.3.2 變化不同空氣體積流率對燃料電池的影響 65
第五章 結論與未來展望………………………… 105
5.1 結論…………………………………………… 105
5.2 未來展望……………………………………… 107
參考文獻…………………………………………… 109
參考文獻 References
[1] Yuan X-Z and Wang H., “PEM Fuel Cell Fundamentals”, Springer London, 2008, pp. 1-87.
[2] 黃鎮江, “燃料電池”,全華科技圖書股份有限公司,2005.
[3] Hayre R. P. O’, Cha S-W, Colella W. G. and Prinz F. B., “Fuel Cell Fundamentals”, 2006.
[4] Nguyen T. V., “A Gas Distributor Design for Proton-Exchange-Membrane Fuel Cells”, J. Electrochem. Soc., Vol. 143, No.5, 1996.
[5] Yi J. S. and Nguyen T. V., “Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors”, J. Electrochem. Soc 146 (1), 1999, pp. 38-45.
[6] Um S., Wang C. Y. and Chen K. S., “Computational fluid mechanics of proton exchange membrane fuel cells”, J. Electrochem. Soc 147, 2000, pp. 4485–4493.
[7] Gurau V., Liu H. T. and Kakac S., “Two-dimensional model for proton exchange membrane fuel cells”, AIChE J. 44, 1998, pp. 2410.
[8] Li P. W., Schaefer L., Wang Q. M., Zhang T. and Chyu M. K., “Multi-gas transportation and electrochemical performance of a polymer electrolyte fuel cell with complex flow channels”, J. Power Sources 115, 2003, pp. 90–100.
[9] Kazim A., Forges P. and Liu H. T., “Effects of cathode operating conditions on performance of a PEMFC with interdigitated flow fields”, Int. J. Energy Res 27, 2003, pp. 401–414.
[10] Guilin H., Jianren F., Song C., Yongjiang L. and Kefa C., “Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields”, J. Power Sources 136, 2004, pp. 1–9.
[11] Um S. and Wang C. Y., “Three-dimensional analysis of transport and electrochemical reactions in polymer electrolyte fuel cells”, Journal of Power Sources, Vol. 125, 2004, pp. 40-51.
[12] Yan Q., Toghiani H.and Causey H., “Steady state and dynamic performance of proton exchange membrane fuel cells (PEMFCs) under various operating conditions and load changes”, Journal of Power Sources, Vol. 161, 2006, pp.492-502.
[13] Yan W. M., Chen C. Y., Mei S. C., Soong C. Y. and Chen F., “Effects of operating conditions on cell performance of PEM fuel cells with conventional or interdigitated flow field”, Journal of Power Sources 162, 2006, pp. 1157–1164.
[14] Yan W. M., Meia S. C., Soong C. Y., Liu Z. S. and Song D., “Experimental study on the performance of PEM fuel cells with interdigitated flow channels”, Journal of Power Sources, Vol. 160, 2006, pp.116-122.
[15] Zhou P., Wu C. W. and Ma G. J., “Influence of clamping force on the performance of PEMFCs”, Journal of Power Sources, Vol. 163, 2007, pp.874-881.
[16] Zhang G., Guo L., Ma B. and Liu H., “Comparison of current distributions in proton exchange membrane fuel cells with interdigitated and serpentine flow fields”, Journal of Power Sources, Vol 188, 2009, pp. 213–219.
[17] Hsieh S. S., Yang S. H., Kuo J. K., Huang C. F. and Tsai H. H., “Study of operational parameters on the performance of micro PEMFCs with different flow fields”, Energy Conversion and management, Vol. 47, 2006, pp. 1868-1878.
[18] Springer T. E., Zawodzinski T. A. and Gottefeld S., “Polymer Electrolyte Fuel Cell Model”, Journal of The Electrochemical Society, Vol. 138, No. 8, 1991, pp. 2334-2341.
[19] Dutta S., Shimpalee S. and Van Zee J. W., “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell”, International Journal of Heat and Mass Transfer, Vol. 44, 2001, pp. 2029-2042.
[20] Van Doormaal J. P. and Raithby F. D., “Enhancements of the SIMPLE method for tredicting incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, 1984, pp. 147-163.
[21] Grove W. R., “On a new voltaic combination”, Philosophical Magazine and Journal of Science Vol. 13, 1838, pp. 430.
[22] 譚晏蓁, “微尺寸指叉型質子交換膜燃料電池數值模擬”,2009.
[23] Hsieh S. S., Feng C. L. and Huang C. F., “Development and performance analysis of a H2 or air micro PEM fuel cell stack”, Journal of Power Sources, Vol. 163, 2006, pp. 440–449.
[24] Yuan W., Tang Y., Pan M., Li Z. and Tang B., “Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance”, Renewable Energy, Vol. 35, 2010, pp. 656-666.
[25] http://www.tfci.org.tw/Fc/index.asp
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.143.23.176
論文開放下載的時間是 校外不公開

Your IP address is 3.143.23.176
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code