Responsive image
博碩士論文 etd-0810111-031149 詳細資訊
Title page for etd-0810111-031149
論文名稱
Title
於氧化鋁基板上設計與製作微波微帶線式平面寬頻及多頻帶通濾波器
Design and Fabrication of Microwave Microstrip Planar Wideband and Multiband Bandpass Filters on Al2O3 Substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-12
繳交日期
Date of Submission
2011-08-10
關鍵字
Keywords
帶通濾波器、寬頻、平面、多頻、微帶線式、氧化鋁基板
multiband, microstrip, Al2O3 substrate, planar, bandpass filter, wideband
統計
Statistics
本論文已被瀏覽 5755 次,被下載 353
The thesis/dissertation has been browsed 5755 times, has been downloaded 353 times.
中文摘要
由於微波無線通信系統的迅速發展,微帶線式平面陶瓷濾波器因其具有體積小,成本低,易於製造,極佳的響應性能和容易與其他射頻電路整合之優點,因此吸引了許多研究之關注。在諸多已發表的文獻中,雖然特性各有所長,但是多數設計皆有電路布局複雜度較高,較不易調校與控制的缺點。在本論文中,提出數種具有不同功能之新型帶通濾波器,以符合於不同商用頻段之應用需求。首先,我們提出兩種新型之非正交輸出入雙模態濾波器,操作於2.4 GHz,T形輸出入結構被安排在同一水平線上以容易連接其他射頻電路。第二,我們採用鉤式和插入式耦合結構,以較高的空間利用率與較小的面積,串聯三個步階阻抗共振器,實現2.4/5.2 GHz雙頻帶通之濾波特性。第三,我們使用兩個開路矩形環狀共振器和U型輸出入結構,用於設計具有深傳輸零點之2.4/5.2 GHz雙頻帶通濾波器。四分之一波長的開路殘段和溝槽結構,用於加強深兩通帶間之傳輸零點,並且消除第二通帶之漣波效應。第四,運用並聯分布之共振器與相位差法設計法研製雙頻(1.23/2.4 GHz)和四頻(1.23/2.4/3.5/5.2 GHz)帶通濾波器,並使其具有非對稱且容易個別調校之通帶頻寬和極深之傳輸零點。以上設計,皆擁有電路布局複雜度較低,容易製作與調校之優點。在本論文中,選擇1mm厚度之高品質因素氧化鋁陶瓷作為基板,製作各種不同功能之帶通濾波器,並達到減少傳輸損耗與微型化之目的。我們使用HFSS和IE3D兩套電磁模擬軟體來進行參數調校與最佳化,並採用低污染的網板印刷法,製作本論文中所提出之各種帶通濾波器,因為此方法不需要使用氯化亞鐵來蝕刻Duroid或在FR4基板表面的銅金屬,所以能大幅降低對於環境的破壞與衝擊。本論文中所提出的各種帶通濾波器皆是以安捷倫 N5230A網路分析儀進行量測。最後,由模擬與實測之結果顯示,本論文中所提出的各種帶通濾波器,確實可以達到實用化之目的。
Abstract
As the microwave wireless communication systems growing rapidly, microstrip planar ceramic filters attract many attentions because of the advantages of small size, low cost, easy fabrication, higher performance and easy integration. In this thesis, several kinds of bandpass filters are designed for different operating purposes. First, two kinds of dual-mode bandpass filters are designed for 2.4 GHz wideband with the T-shaped I/O arranging in a straight way for easy integration. Second, the hook-coupling and insert-coupling structures are adopted for series connecting of the stepped-impedance resonator structures, and 2.4/5.2 GHz dual-band filtering properties could be achieved. Third, two open-loop rectangular ring resonators and U-shaped I/O are designed for 2.4/5.2 GHz dual-band bandpass filters with deep transmission zeros. The quarter wavelength stubs and groove structures are used for enhancing deep transmission zeros between two passband and ripples of the second passband, respectively. Fourth, the parallel positioned resonators with phase difference method are used to design the dual-band (1.23/2.4 GHz) and quad-band (1.23/2.4/3.5/5.2 GHz) bandpass filter with asymmetrical bandwidths and transmission zeros. In the thesis, high quality Al2O3 ceramic substrates are used to fabricate different kinds of bandpass filters for pattern minimization and low losses. The electromagnetic simulators, HFSS and IE3D, were used to adjust and optimize the associated parameters. The printing method was used to fabricate the proposed bandpass filters, which did not need using the FeCl3 to etch the Cu plate from the surface of Duroid or the FR4 substrates. The proposed filters are measured by Agilent-N5230A with the SMA connectors welding. Finally, the simulated and measured results of proposed bandpass filters are in good agreement.
目次 Table of Contents
Acknowledgement iii
Abstract vi
Content viii
Table Captions xi
Figure Captions xii
Chapter 1 Introduction 1
1.1 Review 1
1.2 Motive 4
Chapter 2 Theory Description 7
2.1 Microstrip Line 7
2.1.1 Microstrip Line Structure 7
2.1.2 Approximation of Quasi-TEM Wave 8
2.1.3 Influence of W/h and Strip Thickness 11
2.2 Filter Theory 12
2.2.1 Butterworth Response 13
2.2.2 Chebyshev Response 14
2.2.3 Elliptic Response 15
2.3 Filter Network Theory 16
2.3.1 Network Analysis 16
2.3.2 Scattering Parameters 18
2.4 Microwave Dielectric Theory 19
Chapter 3 Experiments 23
3.1 Substrate Selection 23
3.2 Design and Fabrication 23
Chapter 4 Compact T-Shape Input/Output Dual-Mode Bandpass Filters 25
4.1 Dual-Mode Resonator 25
4.2 Design of T-Shaped I/O Dual-Mode Bandpass Filter 27
4.3 Minimization of T-Shaped I/O Dual-Mode Bandpass Filter 31
4.4 Comparison of Different Type Dual-Mode BPFs 34
Chapter 5 Cascade Triple-Stage Dual-Band Bandpass Filters 36
5.1 Stepped-Impedance Resonator 36
5.2 Dual-Band BPF Using Hook-Coupling Structure 38
5.3 Dual-Band BPF Using Insert-Coupling Structure 41
5.4 Comparison of BPFs Using Different Coupling Structure 44
Chapter 6 Compact Dual-Band Bandpass Filter Using U-Shaped Coupling Structure 46
6.1 U-Shaped Coupling Structure 46
6.2 Dual-Band BPF Using U-Shaped Coupling Structure 47
Chapter 7 Quad-Band Bandpass Filter Using Two Parallel Positioned Resonators 55
7.1 Phase Difference Method 55
7.2 Dual-Band BPF Using Phase Difference Method 56
7.3 Quad-Band BPF Using Phase Difference Method 59
Chapter 8 Conclusion 66
References 70
參考文獻 References
[1] J. S. Hong and M. J. Lancaster, “Microstrip filters for RF/microwave applications,” Wiley, New York, 2001.
[2] B. Razavi, “RF microelectronic,” Prentice-Hall Communication Engineering and Emerging Technologies Series, London, 1998.
[3] J. Helszajn, “Synthesis of Lumped Element, Distributed and Planar Filters,” McGraw-Hill, London, 1990.
[4] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartis, “Microstrip Lines and Slotlines,” Second Edition, Artech House, Boston, 1996.
[5] C. Y. Chen and C. Y. Hsu ” A simple and effective method for microstrip dual-band filters design,” IEEE Microwave Wireless Components Letters, vol.16, no. 5, 2006, pp. 246-248.
[6] M. Makimoto and S. Yamashita, “Bandpass filters using parallelcoupled stripline steeped impedance resonator,” IEEE Transactions on Microwave Theory and Techniques, vol. 28, 1980, pp. 1413-1417.
[7] S. F. Chang, Y. H. Jeng and J. L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electronics Letters, vol. 40, 2004, pp. 38-39.
[8] L. H. Hsieh and K. Chang, “Tunable microstrip bandpass filters with two transmission zeros,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, 2004, pp. 520-525.
[9] C. M. Tsai, H. M. Lee, and C. C. Tsai, “Planar filter design with fully controllable second passband,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 11, 2005, pp. 3429-3439.
[10] X. Y. Zhang and Q. Xue, “Novel centrally loaded resonators and their applications to bandpass filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, 2008, pp. 913-921.
[11] J. S. Hong and M. J. Lancaster, “Cross-coupled microstrip hairpin-resonator filters,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-46, 1998, pp.118-122.
[12] J. T. Kuo and H. S. Cheng, “Design of quasielliptic function filters with a dual-passband response,” IEEE Microwave Wireless Components Letters, vol.14, no. 10, 2004, pp. 472-474.
[13] H. M. Lee, C. R. Chen, C. C. Tsai, and C. M. Tsai, “Dual-band coupling and feed structure for microstrip filter design,” IEEE MTT-S Int. Dig., 2004, pp. 1971-1974.
[14] C. Quendo, E. Rius, and C. Person, “An original topology of dual-band filter with transmission zeros,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, 2003, pp. 1093-1096.
[15] X. M. Lin, “Design of compact tri-band bandpass filter using λ/4 and stub-loaded resonators,” Journal of Electromagnetic Waves and Applications, vol. 24, no. 14-15, 2010, pp. 2029-2035.
[16] C. F. Chen, T. Y. Huang, and R. B. Wu, “Design of dual-and triple-passband filters using alternately cascaded multiband resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 9, 2006, pp. 3550-3558.
[17] S. K. Goudos, Z. D. Zaharis, and T. Yioultsis, “Application of a differential evolution algorithm with strategy adaptation to the design of multiband microwave filters for wireless communications," Progress In Electromagnetics Research, vol. 109, 2010, pp. 123-137.
[18] C. M. Cheng and C. F. Yang, “Develop quad-band (1.57/2.45/3.5/5.2 GHz) bandpass filters on the ceramic substrate,” IEEE Microwave Wireless Components Letters, vol. 20, no. 5, 2010, pp.268-270.
[19] C. F. Yang, C. Y. Kung, Y. C. Chen, S. M. Wu, C. S. Hong, R. L. Wang, “T-Shaped Non-Orthogonal Feed Input/Output Dual-Mode Bandpass Filter,” 2010 IEEE Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, December 7-10, 2010.
[20] C. Y. Kung, Y. C. Chen, and C. F. Yang and M.P. Houng, “2.4/5.2 GHz dual-band bandpass filter using open-loop square-ring and insert-coupling structure,” 2007 IEEE Asia-Pacific Microwave Conference (APMC), Bangkok, Thailand, December 11-14, 2007.
[21] C. Y. Kung, Y. C. Chen, C. F. Yang and C. Y. Huang, “The compact 3-stage 2.4/5.2 Ghz bandpass filter with modified winding hairpin structure and insert-coupling,” Microwave and Optical Technology Letters, vol. 52, 2010, pp. 1156-1159.
[22] C. Y. Kung, Y. C. Chen, S. M. Wu, C. F. Yang, and J. S. Sun, “A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero," Journal of Electromagnetic Waves and Applications, vol. 25, no. 5-6, 2011, pp. 617-628.
[23] C. F. Yang, Y. C. Chen, C. Y. Kung, J. J. Lin and T. P. Sun, “Design and fabrication of a compact quad-band bandpass filter using two different parallel positioned resonators,” Progress In Electromagnetics Research, vol. 115, 2011, pp. 159-172.
[24] T. H. Lee, “Fabrication of modifiable dual-mode bandpass filter on Al2O3 substrate,” Thesis for Master of Science, Department of Electrical Engineering National Sun Yat-sen University, Kaohsiung, Taiwan.
[25] C. Y. Kung, Y. C. Chen, C. C. Diao, B. W. Yu, W. C. Tzou, and C. F. Yang, “WLAN dual-band bandpass filter with hook-coupling open-loop rectangle-ring structure,” International Conference on Manufacturing and Engineering Systems (ICMES 2010), Tainan, Taiwan, December 16-18, 2010.
[26] C. Y. Kung, Y. C. Chen, C. C. Diao, B. W. Yu, W. C. Tzou, and C. F. Yang, “Microstrip quad-band bandpass filter using two parallel resonators,” International Conference on Manufacturing and Engineering Systems (ICMES 2010), Tainan, Taiwan, December 16-18, 2010.
[27] IE3D Simulator, Zeland Software, Inc., Fremont, CA, 2005.
[28] HFSS Simulator, Ansoft Software Inc., Pittsburgh, PA, 2007.
[29] J. S. Hong and S. Li, “Theory and experiment of dual-mode microstrip triangular patch resonators and filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 4, 2004, pp. 1237-1243.
[30] K. Chang and L. H. Hsieh, “Microwave ring circuits and related structures,” second edition, Wiley, New Jersey, 2004.
[31] H. Yabuki, M. Sagawa, M. Matsuo, and M. Makimoto, “Stripline dual-mode ring resonators and their application to microwave devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 44, 1996, pp. 723-729.
[32] I. Wolff, “Microstrip bandpass filter using degenerate modes of a microstrip ring resonator,” Electronics Letters, vol. 8, no.12, 1972, 302-303.
[33] J. S. Hong and M. J. Lancaster, “Microstrip bandpass filter using degenerate modes of a novel meander loop resonator,” IEEE Microwave Guided Wave Letters, vol. 5, no. 11, 1995, pp. 371-372.
[34] M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped impedance ring resonator for bandpass filter applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, 2001, pp. 1235-1240.
[35] A. Gorur, “A novel dual-mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Microwave Wireless Components Letters, vol. 12, no. 10, 2002, pp. 386-388.
[36] C. H. Chen, H. M. Chen, Y. F. Lin, and C. F. Yang, “Miniaturized dual-mode bandpass filter using meander square-ring resonator,” Microwave and Optical Technology Letters, vol. 50, 2008, pp. 2117-2119.
[37] R. J. Mao, X. H. Tang, and F. Xiao, “Miniaturized dual-mode ring bandpass filters with patterned ground plane,” IEEE Microwave Wireless Components Letters, vol. 55, no. 5, 2007, pp. 1539-1547.
[38] S. G. Mo, Z. Y. Yu, and L. Zhang, “Design of triple-mode bandpass flter using improved hexagonal loop resonator,” Progress In Electromagnetics Research, vol. 96, 2009, pp. 117-125.
[39] L. Zhu, P.M. Wecowski, and K. Wu, “New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, 1999, pp. 650-654.
[40] J. C. Liu, C. S. Cheng, and L. Yao, “Dual-mode double-ring resonator for microstrip band-pass filter design,” Microwave and Optical Technology Letters, vol. 39, 2003, pp. 310-314.
[41] J. C. Liu, C. Y. Wu, M. H. Chiang, and D. Soong, “Improved dual-mode double ring resonator with radial stub for UWB filter design,” Microwave and Optical Technology Letters, vol. 44, 2005, pp. 219-222.
[42] K. Chang, “Microwave Ring Circuits and Antennas,” Wiley, New York, 1996.
[43] A. Gorrur, “Realization of a dual-mode bandpass filter exhibiting either a Chebyshev or an elliptic characteristic by changing perturbation’s size,” IEEE Microwave Wireless Components Letters, vol. 14, 2004, pp. 118-120.
[44] H. Kuan and H. Y. Pan, “Design of a dual-mode bandpass filter with wide stopband performance for GPS application,” Microwave and Optical Technology Letters, vol. 50, 2008, pp. 445-447.
[45] P. Cai, Z. Ma, X. Guan, Y. Zhang, B. Chen, and B. Xu, “Dual-mode square ring resonators for design of millimeter-wave ultra-wideband bandpass filter,” Microwave and Optical Technology Letters, vol. 50, 2008, pp. 879-883.
[46] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, 2006, pp. 3779-3785.
[47] Y. F. Lin, C. H. Chen, K. Y. Chen, H. M. Chen, and K. L. Wong “A miniature dual-mode bandpass filter using Al2O3 substrate”, IEEE Microwave Wireless Components Letters, vol. 17, 2007, pp. 580-582.
[48] M. Makimoto and S. Yamashita, Bandpass filters using parallel coupled stripline steeped impedance resonator, IEEE Transactions on Microwave Theory and Techniques, vol.28, 1980, pp. 1413-1417.
[49] J. T. Kuo and E. Shih, “Microstrip stepped-impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 5, 2003, pp. 1554-1559.
[50] J. Wang, Y. X. Guo, B. Z. Wang, L. C. Ong, and S. Xiao, “High-selectivity dual-band stepped-impedance bandpass filter,” Electronic Letters, vol. 42, no. 9, 2006, pp. 1-2.
[51] K. S. Chin, J. H. Yeh, and S. H. Chao, “Compact dual-band bandstop filters using stepped-impedance resonators,” IEEE Microwave Wireless Components Letters, vol. 17, no. 12, 2007, pp. 849-851.
[52] C. C. Chen, “Dual-band bandpass filters using coupled resonator pairs,” IEEE Microwave Wireless Components Letters, vol. 15, 2005, pp. 259-261.
[53] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” IEEE MTT-S Int. Dig., 1997, pp. 789-792.
[54] C. W. Tang and H. H. Liang, “Parallel-coupled stacked SIRs bandpass filters with open-loop resonators for suppression of spurious responses,” IEEE Microwave Wireless Components Letters, vol. 15, no. 11, 2005, pp. 802-804.
[55] S. Y. Lee and C. M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 12, 2000, pp. 2482-2490.
[56] P. Cai, Z. Ma, X. Guan, X. Yang, Y. Kobayashi, T. Anada, and G. Hagiwara, “A novel compact ultra-wideband bandpass filter using amicrostrip stepped-impedance four-modes resonator,” IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 751-754.
[57] C. Monzon, “A small dual-frequency transformer in two sections,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, 2003, pp. 1157-1161.
[58] D. M. Pozar, “Microwave Engineering,” second edition. New York: Wiley, 1998.
[59] E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans., MTT-28, 1980, pp. 513-522.
[60] H. Miyake, S. Kitazawa, T. Ishizaki, M. Tsuchiyama, K. Ogawa, and I. Awai, “A new circuit configuration to obtain large attenuation with a coupled-resonator band elimination filter using laminated LTCC,” IEEE MTT-S, Digest, 2000, pp. 195-198.
[61] R. Li and L. Zhu, “Compact UWB bandpass filter using stub-loaded multiple-mode resonator,” IEEE Microwave Wireless Components Letters, vol.17, no. 1, 2007, pp. 40-42.
[62] C. W. Tang and H. H. Liang, “Parallel-coupled stacked SIRs bandpass filters with open-loop resonators for suppression of spurious responses,” IEEE Microwave Wireless Components Letters, vol. 15, no. 11, 2005, pp.802-804.
[63] X. Y. Zhang, J. X. Cheng, Q. Xue, and S. M. Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microwave Wireless Components Letters, vol. 17, no. 8, 2007, pp. 583-585.
[64] K. M. Shum, W. T. Luk, C. H. Chan, and Q. Xue, “A UWB bandpass filter with two transmission zeros using a single stub with CMRC,” IEEE Microwave Wireless Components Letters, vol. 17, no. 1, 2007, pp. 43-45.
[65] S. Y. Huang and Y. H. Lee, “Tapered dual-plane compact electromagnetic bandgap microstrip filter structures,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 9, 2005, pp. 2656-2664.
[66] T. Lopetegi, M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “wiggly-line” filters with spurious passband suppression,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, 2001, pp. 1593-1598.
[67] D. Ahn, J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, “A design of low-pass filter using the novel microstrip defected ground structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, 2001, pp. 86-93.
[68] B. S. Kim, J. W. Lee, and Myung S. Song, “An Implementation of Harmonic-Suppression Microstrip Filters with Periodic Grooves,” IEEE Microwave and Wireless Communication Letters, vol. 14, no 9, 2004, pp. 413-415.
[69] J. T. Kuo, W. Hsu, and W. T. Huang, “Parallel Coupled Microstrip Filters with Suppression of Harmonic Response,” IEEE Microwave and Wireless Communication Letters, vol. 12, 2002, pp. 383-385.
[70] C. L. Liao and C. H. Chen, “A novel coplanar-waveguide directional coupler with finite-extent backed conductor,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 1, 2003, pp. 200-206.
[71] C. Monzon, “A small dual-frequency transformer in two sections,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, 2003, pp. 1157-1161.
[72] C. S. Ahn, J. Lee, and Y. S. Kim, “Design flexibility of an open-loop resonator filter using similarity transformation of coupling matrix,” IEEE Microwave Wireless Components Letters, vol. 15, no. 4, 2005, pp. 262-264.
[73] J. T. Kuo, M. J. Maa, and P. H. Lu, “A microstrip elliptic function filter with compact miniaturized hairpin resonators,” IEEE Microwave Guided Wave Leters, vol. 10, 2000, pp. 94-95.
[74] C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter wave or quasi quarter wave resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, 2003, pp. 120-131.
[75] M. Guglielmi, P. Jarry, E. Kerherve, O. Roquebrun, and D. Schmitt, “A new family of all-inductive dual-mode filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, 2001, pp. 1764-1769.
[76] M. Sagawa, K. Takahashi, and M. Makimoto, “Miniaturized hairpin resonator filters and their application to receiver front-end MIC’s,” IEEE Transactions on Microwave Theory and Techniques, vol. 37, 1989, pp. 1991-1996.
[77] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpin-comb filters for HTS and other narrow-band applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 45, 1997, pp. 1226-1231.
[78] U. Rosenberg and S. Amari, “Novel coupling schemes for microwave resonator filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, 2002, pp. 2896-2902.
[79] D. C. Rebenaque, F. Q. Pereira, J. P. Garcia, A. A. Melcon, and M. Guglielmi, “Two compact confgurations for implementing transmission zeros in microstrip filters,” IEEE Microwave Wireless Components Letters, vol. 14, no. 10, 2004, pp. 475-477.
[80] V. Osipenkov, and S. G. Vesnin, “Microwave filters of parallel cascade structure,” IEEE Transactions on Microwave Theory and Techniques, vol. 42, 1994, pp. 360-1367.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code