Responsive image
博碩士論文 etd-0810111-180132 詳細資訊
Title page for etd-0810111-180132
論文名稱
Title
以碳化矽熱裂解法與化學氣相沉 積法製備石墨烯的製程與特性研究
Growth and Characterization of Epitaxial Graphene Grown by Thermal Annealing 6-H SiC(001) and Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-17
繳交日期
Date of Submission
2011-08-10
關鍵字
Keywords
石墨烯、拉曼光譜、碳化矽、化學氣相沉積法、銅箔
Raman spectroscopy, Copper Foil, Chemical Vapor Deposition, SiC, Graphene
統計
Statistics
本論文已被瀏覽 5682 次,被下載 1112
The thesis/dissertation has been browsed 5682 times, has been downloaded 1112 times.
中文摘要
本研究探討了石墨烯的成長機制與成果討論,主要目的為找尋最佳的生長方法以期得到連續大尺寸之優質石墨烯,全文將以製程為主軸並分別使用了碳化矽熱裂解法以及化學氣相沉積於銅箔上兩種方式試圖製備樣品,如何調控製程參數與生長方法以達到石墨烯的產出甚至能控制其品質、尺寸,並嘗試以各種觀點分析鑑定其層數與分布狀況,且洞悉了過程中參數調變對成長機制之影響,以及石墨烯在基板轉移方面的改良以利進一步在元件上的應用等,皆是本文討論的重點;分析儀器以SEM、ÁFM、STM、OM等觀測其樣品的生長狀況,理論上若實驗順利,甚至能以AFM、STM進一步得到石墨烯生成之證據,遺憾的是實際量測的過程中發現由於儀器限制,以此兩種顯鏡去檢測石墨烯的特徵厚度(~0.35 nm的倍數)甚至6-H SiC(001)被氫氣蝕刻過後的台階高度(~1.5 nm的倍數)皆屬嚴峻之挑戰;而拉曼光譜是本研究中最主要的分析工具,目前更是各界公認最快速容易能判斷石墨烯層數的利器(G、2D band),除此之外還可用以觀察樣品品質的優劣與基板造成的應力影響(D、G band),甚至透露出石墨烯電子結構的變化(2D band),故此部分在本文中將有最大的著墨。實驗最終以CVD在銅箔上之生長方式為句點,並在成功轉移至SiO2基板後仍得到二層AA堆疊的大片連續石墨烯。
Abstract
This research has discussed the graphene growth mechanism and the achievement, the main purpose is to try the best method to grow graphene which is large size, uniform, and continue. The main issue is about growth and characterizations in full text which is separated by thermal annealing 6-H SiC(001) and chemical vapor deposition on the copper foil to grow graphenen. For instances, to adjust the growth parameters and the growth methods to get graphene and to control the quality, to analysis the number of layers, to research the characterizations during growth process, and to find the better transfer method are all the important focus in this paper. The morphology of samples is studied by SEM, AFM, STM, OM and so on, further the thickness of graphene layers can be observed by AFM and STM. Due to the limit of instruments, the thickness of graphene layer (~0.35 nm) and the thickness of 6-H SiC(001) steps (~1.5 nm) are not easy to observe actually. Raman spectroscopy is the main analysis tool I have employed, it is the fast way to calculate the number of layers (G, 2D band). In addition, Raman scattering is able to know the information of electronic structure variation (2D band), to investigate the stress which is caused by substrate and to estimate the quality of graphene (D, G band). Finally, I take chemical vapor deposition to grow graphenen on the copper foil. Sample is successfully transferred onto SiO2, and the number of graphene layers is estimated to be about two and the structure is AA stacking from these data. The data also shows the graphene is large size, uniform, and continue.
目次 Table of Contents
致謝 .......................................................................................................................................................... I
中文摘要 ................................................................................................................................................. II
Abstract ................................................................................................................................................... III
第一章 緒論 ...................................................................................................................................... 1
第二章 文獻與理論介紹 ................................................................................................................... 3
2.1 石墨烯的結構及特性 ................................................................................................................... 3
2.2 石墨烯的製備方法 ....................................................................................................................... 5
2.3 碳化矽熱裂解法的機制 ............................................................................................................... 6
2.4 化學氣相沉積法的機制 ............................................................................................................. 10
2.5 石墨結構的拉曼光譜 ................................................................................................................. 12
2.6 石墨烯層數的檢測方法 ............................................................................................................. 14
2.7 石墨烯基板轉移的方法 ............................................................................................................. 17
第三章 實驗儀器與原理介紹 ......................................................................................................... 19
3.1 製程儀器 .................................................................................................................................... 19
3.1.1 高溫管狀爐系統(High Temperature Tube Furnace) ..................................................... 19
3.1.2 電子束蒸鍍系統(E-Beam Evaporator) ......................................................................... 20
3.1.3 快速熱退火系統(RTA) ................................................................................................. 20
3.1.4 高密度電漿化學氣相沉積系統(HDP-CVD) ............................................................... 21
3.1.5 旋轉塗佈系統(Spin Coating) ........................................................................................ 21
3.2 量測儀器 .................................................................................................................................... 22
3.2.1 掃描式電子顯微鏡(SEM) ............................................................................................. 22
3.2.2 能量散佈分析儀(EDS) ................................................................................................. 23
3.2.3 原子力顯微鏡(AFM) .................................................................................................... 23
3.2.4 掃描式穿隧電子顯微鏡(STM) ..................................................................................... 24
3.2.5 N&K薄膜特性分析儀(N&K Analyzer) ........................................................................ 25
3.2.6 光學顯微鏡(OM) .......................................................................................................... 25
3.2.7 微拉曼光譜儀 ............................................................................................................... 25
第四章 實驗與結果討論(碳化矽裂解法) ........................................................................................... 27
4.1 氫氣蝕刻階段 ............................................................................................................................. 27
4.1.1 氫氣蝕刻溫度的調變 ................................................................................................. 28
4.1.2 氫氣蝕刻時間的調變 ................................................................................................. 32
4.1.3 通入氫氣流量的調變 ................................................................................................. 33
4.2 石墨化階段 ............................................................................................................................... 35
4.2.1 常壓氬氣石墨化 ......................................................................................................... 35
4.2.2 低真空石墨化 ............................................................................................................. 40
4.2.3 未氫氣蝕刻的低真空石墨化 ..................................................................................... 43
4.2.4 鎳傶化金屬的引入 ................................................................................................... 45
4.3 樣品製備後的處理 ..................................................................................................................... 51
4.4 小結 ............................................................................................................................................ 51
第五章 實驗與結果討論(化學氣相沉積法) ....................................................................................... 54
5.1 催化金屬的選擇 ......................................................................................................................... 54
5.2 石墨烯製備參數的調變 ............................................................................................................. 55
5.2.1 通入碳源溫度的調變 ................................................................................................. 57
5.2.2 通入碳源時間的調變 ................................................................................................. 64
5.2.3 氫氣預處理時間的調變 ............................................................................................. 73
5.2.4 通入氣體流量調變 ..................................................................................................... 77
5.3 石墨烯基板的轉移 ..................................................................................................................... 90
5.3.1 石墨烯轉移步驟 ......................................................................................................... 91
5.3.2 轉移成果失敗與改進 ............................................................................................... 91
5.3.3 PMMA的影響 ........................................................................................................ 100
5.4 小結 .......................................................................................................................................... 102
第六章 結論與未來展望 ................................................................................................................... 104
參考文獻 .............................................................................................................................................. 105
附錄A CVD樣品之STM影像 ........................................................................................................ 110
附錄B CVD樣品之SEM影像 ........................................................................................................ 111
附錄C CVD樣品之拉曼光譜 .......................................................................................................... 113
參考文獻 References
【1】 A. K. Geim, "The rise of graphene", Nat Mater, 6, 183 (2007).
【2】 J. Hass, "The growth and morphology of epitaxial multilayer
graphene", Journal of Physics: Condens Matter, 20, 323202 (2008).
【3】 呂俊頡, "以化學氣相沉積法控制單層與雙層石墨於圖文化矽基板之成長",國立清華大學碩士論文 (2009).
【4】 S. Latil, "Charge carriers in few-layer graphene films", Physics Review Letter, 97, 036803 (2006).
【5】 B. Partoens, "From graphene to graphite: electronic structure around the k point", Physics Review B, 74, 075404 (2006).
【6】 S. Bae, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology, 5, 547 (2010).
【7】 K. Kisoda, "Few-layer epitaxial graphene grown on vicinal 6H-SiC studies by deep ultraviolet Raman spectroscopy", Applied Physics Letters, 97, 033108 (2010).
【8】 D. S. Lee, "Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2", Nano Letters, 8, 4320 (2008).
【9】 T. Li, "Characteristics of graphite films on silicon- and carbon- terminated faces of silicon carbide", Georgia Institute of Technology (2006).
【10】W. A. de Heer, "Epitaxial graphene", Solid State Communications, 143, 92 (2007).
【11】C. Berger, "Electronic confinement and coherence in patterned epitaxial graphene", Science, 312, 1191 (2006).
【12】M. Hupalo, "Growth mechanism for epitaxial graphene on vicinal 6H-
SiC(0001) surfaces: a scanning tunneling microscopy study", Physical Review B, 80, 041401 (2009).
【13】W. Norimatsu, "Formation process of graphene on SiC(0001)", Physica E, 42, 691 (2010).
【14】W. Norimatsu, "Transitional structures of the interface between graphene and 6H-SiC(0001)", Chemical Physics Letters, 468, 52 (2009).
【15】K. V. Emtsev, "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide", Nature Materials, 8, 203 (2009).
【16】J. D. Plummer, "Silicon VLSI technology fundamentals, practice and
modeling", Pearson Education International (2000).
【17】J. Y. Hwang, "Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density", Nanotechnology, 21, 465705 (2010).
【18】C. Mattevi, "A review of chemical vapour deposition of graphene on copper", Journal of Materials Chemistry, 21, 3324 (2011).
【19】X. Li, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324, 1312 (2009).
【20】Z.H. Ni, "Raman spectroscopy and imaging of graphene", Nano Res, 1, 273 (2008).
【21】 L.M. Malard, "Raman spectroscopy in graphene", Physics Reports, 473, 51 (2009).
【22】Z. H. Ni, "Raman spectroscopy of epitaxial graphene on a SiC substrate", Physical Review B, 77, 115416 (2008).
【23】A. C. Ferrari, "Raman spectrum of graphene and graphene layers",
Physical Review Letters, 97, 187401 (2006).
【24】Y. Y. Wang, "Raman studies of monolayer graphene: the substrate effect", Journal of Physics Chemistry C, 112, 10637 (2008).
【25】K. Kisoda, "Few layer epitaxial graphene grown on vicinal 6-H SiC studied by deep ultraviolet Raman spectroscopy", Applied Physics Letters, 97, 033108 (2010).
【26】S. Reich, "Raman spectroscopy of graphite", Philosophical Transactions of The Royal Society A, 362, 2271 (2004).
【27】 A.C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects", Solid State Communications, 143, 47 (2007).
【28】S. Shivaraman, "Thickness estimation of epitaxial graphene on sic using attenuation of substrate raman intensity", Journal of Electronic Materials, 38, 725 (2009).
【29】Z. H. Ni, "Graphene thickness determination using reflection and contrast spectroscopy", Nano Letters, 7, 2758 (2007).
【30】 L. G. D. Arco, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics", ACS Nano, 4, 2865 (2010).
【31】 X. Li, "Transfer of large-area graphene films for high-performance transparent conductive electrodes", Nano Letters, 9, 4359 (2009).
【32】 P. Pham, "Transfering chemical vapor deposition grown graphene", University of Colorado Boulder (2010).
【33】 M. O. Brien, "CVD synthesis and characterization of graphene thin
films", Army Research Laboratory ARL-TR-5047 (2010).
【34】 吳景輝,"含銀AZO透明導電膜及AZO@Au奈米粉體之研究",國立成功大
學碩士論文 (2007).
【35】 J. H. Seo, "Effect of a surface pre-treatment on graphene growth
using a SiC substrate", Microelectronic Engineering, 87, 2002
(2010).
【36】 Z. Y. Juang, "Synthesis of graphene on silicon carbide substrates
at low temperature", Carbon, 47, 2026 (2009).
【37】 A. Reina, "Layer area, few-layer graphene films on arbitrary
substrates by chemical vapor deposition", Nano Letters, 9, 3087
(2009).
【38】 C. Mattevi, "A review of chemical vapour deposition of graphene on
copper", Journal of Materials Chemistry, 21, 3324 (2011).
【39】 J. Rohrl, "Raman spectra of epitaxial graphene on SiC(0001) ",
Applied Physics letters, 92, 201918 (2008).
【40】 A. Das, "Raman spectroscopy of graphene on different substrates and
influence of defects", Bulletin of Materials Science, 31, 579
(2008).
【41】 X. Li, "Graphene films with large domain size by a two-step chemical
vapor deposition process", Nano Letter, 10, 4328 (2010).
【42】 A. Srivastava, "Novel liquid precursor-based facile synthesis of
large-area continuous, single, and few-layer graphene films",
Chemistry of Materials, 22, 3457 (2010).
【43】 Z. Sun, "Growth of graphene from solid carbon sources", Nature, 468,
549 (2010).
【44】 K. K. Kim, "Enhancing the conductivity of transparent graphene films via doping", Nanotechnolog, 21, 285205 (2010). (Supplementary Data)
【45】 Y. Miyamoto, "Raman-scattering spectroscopy of epitaxial graphene formed on SiC film on Si substrate", e-Journal of Surface Science and Nanotechnology, 7, 107 (2009).
【46】 A. Gupta, "Raman scattering from high-frequency phonons in supported n-graphene layer films", Nano Letters, 6, 2667 (2006).
【47】 吳至彧, "利用化學氣相沉積法合成數層石墨烯以及透明導電薄膜之研究國立清華大學碩士論文 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code