Responsive image
博碩士論文 etd-0810112-025115 詳細資訊
Title page for etd-0810112-025115
論文名稱
Title
高導電性PEDOT:PSS/PANI 複合有機陽極應用於有機太陽能電池之研究
Highly conductive PEDOT:PSS/PANI hybrid anode for ITO-free polymer solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
118
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-08-10
關鍵字
Keywords
聚苯胺、複合有機陽極、有機太陽能電池
polymer solar cells, PANI, PEDOT:PSS, hybrid anode
統計
Statistics
本論文已被瀏覽 5659 次,被下載 2179
The thesis/dissertation has been browsed 5659 times, has been downloaded 2179 times.
中文摘要
本研究在Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (簡稱PEDOT:PSS)上以電化學定電壓法沉積聚苯胺(polyaniline;PANI)薄膜,以PEDOT:PSS/PANI兩種有機材料所組成的「複合有機薄膜」應用於有機太陽能電池之陽極,以取代透明導電極ITO,未來更可以此發展製作可撓式有機太陽能電池。
在本研究中將固定複合有機薄膜的總厚度,藉由改變PEDOT:PSS薄膜與PANI薄膜的厚度比例來探討其穿透率、吸收光譜、最高被佔據分子軌域(Highest Occupied Molecular Orbital;HOMO)、表面形態以及粗糙度,進而探討其薄膜特性對於元件效率的影響,並與相同厚度(280nm)的PEDOT:PSS薄膜與以其所製成的PEDOT:PSS陽極元件做比較。在本研究中發現,複合有機薄膜的穿透度、導電度、表面形態以及表面粗糙度皆會隨著PANI薄膜的厚度不同而有所改變,但是在HOMO能階方面卻不會隨著PANI厚度不同而改變。
在元件效率的表現探討上,發現元件效率主要受到PANI薄膜的粗糙度及表面型態的影響,其中以厚度為250nm的PEDOT:PSS與厚度為30nm的PANI所形成的複合有機薄膜,擁有最佳的表面粗糙度及表面型態。元件結構為PEDOT:PSS (250 nm)/ PANI (30 nm)/ P3HT:PCBM (100 nm)/ Al (200 nm),元件面積0.16cm2,經由AM 1.5G 100 mW/ cm2的太陽光模擬量測,未經熱處理元件有最高的光電轉換效率0.68%,且在經過90℃10分鐘的熱處理過後,其元件的光電轉換效率可達1.06%。
Abstract
This research is to synthesize polyaniline (PANI) thin film on the Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) by using potentiostatic deposition of electrochemical method. The hybrid film composed of PEDOT:PSS and PANI was fabricated to replace the ITO layer for polymer solar cells as an anode. In the future, the hybrid film can develop the flexible polymer solar cells.
In this study, we fixed the total thickness of the hybrid film, and we investigated optical transmittance, conductivity, Highest Occupied Molecular Orbital (HOMO), surface roughness, and surface morphology of hybrid films by changing the ratio of PEDOT:PSS and PANI, and to discuss the factors on device efficiency. Then, we compared the device structures with anode made by PEDOT: PSS. We found the hybrid films fabricated with different ratio of PEDOT:PSS and PANI, and the HOMO results were similar. In addition, we found optical transmittance, conductivity, surface roughness, and surface morphology of hybrid films that varies with different ratio of PEDOT:PSS and PANI.
The power conversion efficiencies of the device mainly were affected by the surface roughness and morphology of the hybrid film surface. Comparing to other parameters, the hybrid film fabricated by PEDOOT:PSS(280nm) and PANI(30nm) owns the most appropriate surface roughness and surface morphology. The power conversion efficiency(PCE) was up to 0.68%, and then via post-annealing of 90℃ 10 minutes the PCE was increase to 1.06% under AM 1.5G illumination based on PEDOT:PSS (280 nm) / PANI (30 nm) / P3HT: PCBM (100 nm) / Al (200 nm), and the device area of 0.16 cm2.
目次 Table of Contents
誌謝.....I
中文摘要.....II
Abstract .....IV
目錄.....VI
圖目錄.....X
表目錄.....XIV
第一章 緒論.....1
1-1開發新能源.....1
1-2 太陽能電池的分類與介紹.....2
1-3 有機太陽能電池結構演進.....5
1-3-1 單層結構.....5
1-3-2 雙層異質接面結構.....6
1-3-3 混合層異質接面結構.....7
1-3-4 接合層異質接面結構.....8
1-4 導電高分子.....9
1-4-1 發展過程.....9
1-4-2 導電高分子-PEDOT:PSS.....11
1-4-3 導電高分子-聚苯胺.....13
1-5 有機太陽能電池材料簡介.....20
1-5-1 電荷施體材料.....20
1-5-2 電荷受體材料.....20
1-6 研究動機 .....21
第二章 理論基礎.....24
2-1 能量及電荷轉移機制.....24
2-2 光電轉換原理.....26
2-3 太陽光模擬.....31
2-4 太陽能電池等效電路.....36
2-5 光電特性參數 .....38
2-5-1 短路電流(Short Circuit Current,簡稱ISC).....39
2-5-2 開路電壓(Open Circuit Voltage,簡稱VOC)...39
2-5-3 填充因子(Fill Factor,簡稱FF).....40
2-5-4 功率轉換效率(Power Conversion Efficiency,簡稱ηP).....41
第三章 實驗.....42
3-1 實驗架構.....42
3-2實驗藥品.....44
3-3製程設備.....46
3-4 量測儀器與方法.....49
3-4-1 紫外光/可見光光譜儀.....49
3-4-2 光電子光譜分析儀.....50
3-4-3 電阻量測法 .....51
3-4-4 原子力顯微鏡.....52
3-4-5 太陽光譜模擬量測系統.....56
3-4-6 表面輪廓儀.....57
3-4-7 場發射型掃描式電子顯微鏡.....60
3-5 藥品配製.....61
3-5-1 PEDOT:PSS材料.....61
3-5-2 PANI材料.....61
3-5-3 P3HT/PCBM材料.....61
3-6實驗步驟.....62
3-6-1 ITO基板圖化.....62
3-6-2 有機太陽能電池基礎元件製程 .....64
3-6-3 基礎元件PEDOT:PSS上沉積PANI作複合有機陽極 .....66
第四章 結果與討論.....67
4-1 材料分析結果與討論.....67
4-1-1 UV-Vis量測穿透光譜 .....67
4-1-2 電性測量.....69
4-1-3 能階測定.....73
4-1-4 形貌(morphology)與分佈狀況 .....76
4-1-5 表面粗糙度 .....79
4-2 元件製程結果與討論.....86
第五章 總結.....95
參考文獻.....97
參考文獻 References
[1] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
[2] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
[3] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Lederc, K. Lee, and A. J. Heeger, Nat. photo. 3, 297 (2009).
[4] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. photo. 3, 649 (2009).
[5] H. Kallmann, and M. Pope, J. Chem. Phys. 30, 585 (1958).
[6] 陳盛煒, “光伏薄膜混摻Alq3的研究” , 中山大學碩士論文, (2005).
[7] G. Natta, G. Mazzanti, and P. Corradini, Atti. Accad. Naz. Lince
Rend. Cl. Sci. Fis. Mat. Natur. 25, 3 (1958).
[8] H. Shirakawa, and S. Ikeda, Polym. J. 2, 231 (1971).
[9] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. Chem. Commun, 578 (1977).
[10] B. Wessling, Synth. Met. 4, 119 (1991).
[11] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, Synth. Met. 111-112, 139 (2000).
[12] X. Gong, D. Moses, A. J. Heeger, S. Liu, and A. K. Y. Jen, Appl. Phys. Lett. 83, 1 (2003).
[13] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
[14] S. Alem, R. de Bettignies, J.-M. Nunzi, and M. Cariou, Appl. Phys. Lett. 84, 2178 (2004).
[15] M. Y. Song, K. J. Kim, and D. Y. Kim, Sol. Energy Mater. Sol. Cells 85, 31 (2005).
[16] F. Jonas, J.T. Morrison, Synth. Met. 85,1397 (1997)
[17] Christopher J.M.Emmott, AntonioUrbina, and JennyNelson, Sol. Energy Mater. Sol. Cells 97, 14 (2012).
[18] Mohammad ArifurRahman, AbdurRahim, Md.Maniruzzaman, KiyeulYang , Chiyoung Lee, Hoseok Nam, Hoesup Soh, and Jaegab Lee, Sol. Energy Mater. Sol. Cells 95, 3573 (2011).
[19] Youn Soo Kim, Seok Bin Oh, Jong Hyeok Park, Mi Suk Cho, and Youngkwan Lee, Sol. Energy Mater. Sol. Cells 94, 471 (2010).
[20] D. M. Mohilner, R. N. Adams, and W. J. Argersinger, J. Am. Chem.
Soc. 84, 3618 (1962).
[21] J. Bacon, and R. N. Adams, J. Am. Chem. Soc. 90, 6596 (1968).
[22] E. M. Genies, and C. Jsintavis, Electroanal. Chem. 195, 109 (1985).
[23] A. G. MacDiarmid, J. H. Chiang, W. Huang, B. D. Humphery, and N. L. D. Somasiri, Mol. Cryst. Liq. Cryst. 125, 309 (1985).
[24] W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem. 91, 5813 (1987).
[25] M. Al-Ibrahim, H. K. Roth, M. Schroedner, A. Konkin, U. Zhokhavets, G. Gobsch, P. Scharff, and S. Sensfuss, Org. Electron. 6, 65 (2005).
[26] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
[27] E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3222 (1984).
[28] H. Spanggard, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
[29] Seok-In Na, Seok-Soon Kim, Jang Jo, and Dong-Yu Kim, Adv. Mater. 20, 4061 (2008).
[30] Annica Andersson, Nicklas Johansson, Per Broms, Nu Yu, Donald Lupo, and William R. Salaneck, Adv. Mater. 10, 859(1998).
[31] Ji Cui, Anchuan Wang, Nikki L. Edleman, Jun Ni,Paul Lee, Neal R. Armstrong, and Tobin J. Marks, Adv. Mater. 13, 1476 (2001).
[32] 黃彥良,“陽極緩衝層PEDOT:PSS之特性對於有機高分子太陽
能電池的影響”,中山大學碩士論文, (2007).
[33] A.M. Nardes, M. Kemerink, M.M. de Kok, E. Vinken, K. Maturova,
and R.A.J. Janssen, Org. Electron. 9,727 (2008).
[34] J. Huang, P.F. Miller , J.C. de Mello , A.J. de Mello , and D.D.C.
Bradley, Synth. Met. 139 , 569 (2003).
[35] B. Burnett, The Basic Physics and Design of Ⅲ-Ⅴ Multi-junction Solar Cells, (2002).
[36] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, (1970).
[37] M. A. Green, Solar Cells : Operating Principles, Technology, and System Application, (1982).
[38] 莊嘉琛, 太陽能工程-太陽電池篇, 全華(1997).
[39] 蔡宜展, “OLED新穎紅光摻雜材料特性之研究” , 中山大學碩士論文, (2005).
[40] 陳金鑫、黃孝文, 有機電激發光材料與元件, 五南(2005).
[41] 電阻量測法參考網頁
http://www.hcstarck.de/index.php?page_id=1178
[42] E. M. Genies, and C. Jsintavis, Electroanal. Chem. 195, 109 (1985).
[43] 郭鎮安, “聚苯胺及三氧化嗚互補式電變色元件” , 中央大學碩士論文(2000).
[44] W. W. Focke, G. E. Wnek and Y. Wei, J. Phys. Chem. 91, 5813 (1987).
[45] 蔡政良,“電化學製備聚苯胺奈米薄膜應用於有機高分子太陽能
電池之研究”,中山大學碩士論文(2010).
[46] Haibin Zhang, JixiaoWang, ZhiWang, Fengbao Zhang, and Shichang Wang, Synth. Met. 159 , 277(2009).
[47] Furui Tan, Shengchun Qu, Ju Wu, Zhijie Wang, Lan Jin, Yu Bi, Jie Cao, Kong Liu, Junmeng Zhang, and Zhanguo Wang, Sol. Energy Mater. Sol. Cells 95, 440(2011).
[48] B. P. Rand, J. Genoe, P. Heremans and J. Poortmans, Prog. Photovolt: Res. Appl. 15, 659 (2007).
[49] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code