Responsive image
博碩士論文 etd-0810112-125355 詳細資訊
Title page for etd-0810112-125355
論文名稱
Title
以中間相微碳球製備複合式電極應用於超級電容器之研究
Study of supercapacitor using composite electrode with mesocarbon microbeads
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-17
繳交日期
Date of Submission
2012-08-10
關鍵字
Keywords
三氧化鎢、氧化鎳、複合式電極、超級電容器、中間相微碳球
Mesocarbon microbeads, Supercapacitor, Composite electrode, Nickel oxide, Tungsten oxide
統計
Statistics
本論文已被瀏覽 5709 次,被下載 1627
The thesis/dissertation has been browsed 5709 times, has been downloaded 1627 times.
中文摘要
本研究以中間相微碳球(Mesocarbon microbeads, MCMB)製備超級電容器之碳電極,探討活性碳之比表面積、導電碳黑的添加量、黏著劑的添加量及不同電解質對電容特性的影響,找出具最佳電容特性之碳電極製備參數。並以電子束蒸鍍法於碳電極上分別沉積氧化鎳(NiO)及三氧化鎢(WO3)薄膜,製備出複合式電極,研究不同循環伏安掃描速率對其電容特性的影響,並進行恆電流充放電效率與壽命測試。
研究結果顯示,使用具高比表面積(2685 m2/g)與較大孔體積(0.6 cm3/g)的中間相微碳球,並添加10 wt.%的碳黑及2 wt.%的黏著劑,可製備出具最佳電容特性的碳電極,其比電容值於水系電解質(1 M KOH)中為230.8 F/g,於有機電解質(1 M Et4NBF4)中為221.5 F/g。此外,於碳電極上沉積NiO與WO3薄膜製成之複合式電極,由XRD與SEM分析得知,NiO薄膜為片狀的結晶結構,而WO3薄膜則為小圓石形狀的非晶結構。由循環伏安分析得知,複合式電極在高掃描速率下可比碳電極具有較佳的比電容值,提升超級電容器於高功率密度下的電容特性,並改善碳電極在高掃描速率下電容衰退的現象。在恆電流充放電效率與壽命測試中,複合式電極在經過連續5000次的充放電後,其充放電效率可接近100%,且電極材料與基板間仍具有良好的附著性。
Abstract
In this study, the carbon electrode of supercapacitor was fabricated by using mesocarbon microbeads. For finding the optimal processing parameters of carbon electrode, the effects of specific surface area of activated carbon, the amount of carbon black and binder, and various electrolytes on the capacitative properties of supercapacitor are investigated. To fabricate the composite electrode of supercapacitor, NiO and WO3 thin films were deposited respectively on the carbon electrode by electron beam evaporation. The influences of various scan rates of cyclic voltammograms (CV) on the characteristic of capacitance are studied. The charge-discharge efficiency and life time of the composite electrode are also discussed.
Experimental results reveal that the optimum carbon electrode can be obtained using mesocarbon microbeads with high specific surface area (2685 m2/g) and larger pore volume (0.6 cm3/g) and adding 10 wt.% carbon black and 2wt.% binder. The specific capacitances of carbon electrodes in 1 M KOH and 1 M Et4NBF4 are 230.8 F/g and 221.5 F/g, respectively. Besides, the XRD and SEM results showed that NiO and WO3 thin films on composite electrode are sheet-liked crystal structure and stone-liked amorphous structure, respectively. The composite electrode exhibits better capacitance properties than those of carbon electrode at high scan rate by CV analysis. It reveals the promotion of the capacitative property of supercapacitor at higher power density and the improving of the decay property in capacitance at high scan rate. Finally, in the test of charge-discharge efficiency and life time, the charge-discharge efficiency is near 100% after 5000 cycles and it still retains good adhesion between electrode material and substrate.
目次 Table of Contents
論文審定書
誌謝
中文摘要 i
英文摘要 ii
總目錄 iv
圖次 viii
表次 xi
附錄索引 xii
第一章 前言 1
1-1 概述 1
1-2 研究動機 4
1-3 超級電容器文獻回顧 6
1-3-1 活性碳電極文獻探討 6
1-3-2 複合式電極文獻探討 8
1-4 研究內容 10
第二章 理論 11
2-1 超級電容器材料之簡介 11
2-2 超級電容器電極製程方式 14
2-2-1 碳電極製程方式 14
2-2-2 複合式電極製程方式 15
2-3 超級電容器結構 15
2-3-1 集電板 16
2-3-2 碳電極層 17
2-3-3 金屬氧化物層 17
2-3-4 電解質層 21
2-3-5 隔膜 23
2-4 超級電容器的工作原理 23
2-4-1 電雙層電容儲能原理 23
2-4-2 偽電容儲能原理 27
2-5 鍍膜技術 30
2-5-1 薄膜沈積 30
2-5-2 蒸鍍法 31
2-5-3 電子束的產生 32
2-5-4 電子束加速原理 34
2-6 電化學特性 34
2-6-1 二極式與三極式之量測 34
2-6-2 電化學電容器的電容測定方法 36
第三章 實驗 40
3-1 碳電極製備 42
3-1-1 碳膏製備材料 42
3-1-2 碳膏調配 43
3-1-3 基板之準備與清洗 43
3-1-4 碳電極之塗佈 44
3-2 複合式電極製備 44
3-2-1 NiO與WO3材料選用 45
3-2-2 NiO與WO3鍍料之準備 45
3-2-3 NiO與WO3鍍膜步驟 45
3-3 電極薄膜製程參數 48
3-4 電解質製備 49
3-5 電極薄膜物性分析 51
3-5-1 比表面積與孔徑分析 51
3-5-2 場發射掃描式電子顯微鏡(Field emission scanning electron microscope, FE-SEM)分析 54
3-5-3 能量散佈光譜儀(Energy dispersive spectrometer, EDS)分析 54
3-5-4 X光繞射(X-ray diffraction, XRD)分析 55
3-6 電化學特性分析 55
3-6-1 循環伏安(Cyclic voltammogram, CV)分析 55
3-6-2 恆電流充放電效率(Charge-discharge efficiency)測試 56
第四章 結果與討論 57
4-1 不同比表面積活性碳對電容特性之影響 57
4-1-1 活性碳粉末比表面積與孔徑分析 57
4-1-2 活性碳粉末表面形貌SEM分析 58
4-1-3 循環伏安分析 59
4-2 添加不同重量百分比碳黑對電容特性之影響 62
4-2-1 碳電極表面形貌SEM分析 62
4-2-2 循環伏安分析 65
4-3 添加不同重量百分比黏著劑(PVB)對電容特性之影響 67
4-3-1 碳電極表面形貌SEM分析 67
4-3-2 碳電極剖面結構SEM分析 69
4-3-3 循環伏安分析 70
4-4 使用不同電解質對電容特性之影響 72
4-4-1 循環伏安分析 73
4-5 複合式電極之電容特性 76
4-5-1 XRD晶向分析 77
4-5-2 複合式電極表面形貌及剖面結構SEM分析 81
4-5-3 複合式電極組成成份EDS分析 82
4-5-4 循環伏安分析 83
4-5-5 恆電流充放電壽命測試 86
第五章 結論 90
參考文獻 92
附錄 98

參考文獻 References
[1] 美國能源資訊協會(EIA),2010國際能源展望資料(IEO2010)。
[2] 21世紀再生能源政策網(REN21),2011全球再生能源狀況報告(GSR2011)。
[3] 鄧梅根,“電化學電容器電極材料研究”,中國科學技術大學出版社,2009。
[4] D. H. Fritts, J. Electrochem. Soc., 144 (1997) 2233.
[5] 高志勇、陳耿陽、吳富其、江萬爵、賴志坤,“超高電容器製程技術簡介”,工業材料,第166期,2000,p.113。
[6] D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M.Yumura and S. Jima, Nat. Mater., 5 (2006) 987.
[7] L. Hu, M. Pasta, F. L. Mantia, L. Cui, S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han and Y. Cui, Nano Lett., 10 (2010) 708.
[8] R. Salinger, U. Fischer, C. Herta and J. Fricke, J. Non-Cryst. Solids, 225 (1998) 81.
[9] B. Fang, Y. Z. Wei, K. Maruyama and M. Kumagai, J. Appl. Electrochem., 35 (2005) 229.
[10] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, J. Phys. Chem. C, 113 (2009) 13103.
[11] X. Du, P. Guo, H. Song and X. Chen, Electrochim. Acta, 55 (2010) 4812.
[12] N. L. Wu and S. Y. Wang, J. Power Sources, 110 (2002) 233.
[13] J. P. Zheng and T. R. Jow, J. Electrochem. Soc., 142 (1995) L6.
[14] F. B. Zhang, Y. K. Zhou and H. L. Li, Mater. Chem. Phys., 83 (2004) 260.
[15] M. S. Wu, M. J. Wang and J. J. Jow, J. Power Sources, 195 (2010) 3950.
[16] C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 145 (1998) 4097.
[17] V. Srinivasan and J. W. Weidner, J. Power Sources, 108 (2002) 15.
[18] H. Y. Lee and J. B. Goodenough, J. Solid State Chem., 148 (1999) 81.
[19] T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe and K. Kajita, Solid State Ion., 152-153 (2002) 833.
[20] S. C. Pang, M. A. Anderson and T. W. Chapman, J. Electrochem. Soc., 147 (2000) 444.
[21] T. Xue, C. L. Xu, D. D. Zhao, X. H. Li and H. L. Li, J. Power Sources, 164 (2007) 953.
[22] H. Talbi, P.E. Just and L.H. Dao, J. Appl. Electrochem., 33 (2003) 465.
[23] V. Gupta and N. Miura, Mater. Lett., 60 (2006) 1466.
[24] J. Wang, Y. Xu, X. Chen and X. Du, J. Power Sources, 163 (2007) 1120.
[25] S. R. P. Gnanakan, M. Rajasekhar and A. Subramania, Int. J. Electrochem. Sci., 4 (2009) 1289.
[26] S.K. Tripathi, A. Kumar and S.A. Hashmi, Solid State Ion., 177 (2006) 2979.
[27] Q. F. Wu, K. X. He, H. Y. Mi and X. G. Zhang, Mater. Chem. Phys., 101 (2007) 367.
[28] C. H. Hamann, A. Hamnett and W. Vielstich, “Electrochemistry”, Wiley-Vch, New York (1998).
[29] H. D. Young, “Physics”, Addison-Wesley Publishing Co., New York (1992).
[30] H. L. Becker, U. S. Patent, 2800616 (1957).
[31] H. Shi, Electrochim. Acta, 41 (1995) 1633.
[32] IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 31 (1972) 578.
[33] G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, J. Electrochem. Soc., 147 (2000) 2486.
[34] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin and F. Beguin, J. Phys. Chem. Solids, 65 (2004) 287.
[35] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41 (2003) 1765.
[36] M. J. Bleda-Martinez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós and A. Linares-Solano, Carbon, 43 (2005) 2677.
[37] T. Momma, J. Power Sources, 60 (1996) 249.
[38] D. Qu, J. Power Sources, 109 (2002) 403.
[39] M. Nakamura, M. Nakanishi and K. Yamamoto, J. Power Sources, 60 (1996) 225.
[40] I. J. Kim, S. Yang, S. I. Moon and H. S. Kim, J. Power Sources, 164 (2007) 964.
[41] A. I. Beliakov and A. M. Brintsev, in Proceedings of the 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, (1997) Dec 8-10.
[42] J. P. Zheng, Electrochem. Solid State Lett., 2 (1999) 359.
[43] J. K. Chang, C. T. Lin and W. T. Tsai, Electrochem. Commun., 6 (2004) 666.
[44] A. I. Beliakov and A. M. Brintsev, Presented at the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach Florida, (1999) Dec 6-8.
[45] J. H. Park, O. O. Park, K. H. Shin, C. S. Jin and J. H. Kim, Electrochem. Solid State Lett., 5 (2002) H7.
[46] G. H. Yuan, Z. H. Jiang, A. Aramata and Y. Z. Gao, Carbon, 43 (2005) 2913.
[47] C. Yuan, X. Zhang, Q. Wu and B. Gao, Solid State Ion., 177 (2006) 1237.
[48] C. Yuan, B. Gao, L. Su and X. Zhang, Solid State Ion., 178 (2008) 1859.
[49] H. Inoue, Y. Namba and E. Higuchi, J. Power Sources, 195 (2010) 6239.
[50] S. R. P. Gnanakan, K. Karthikeyan, S. Amaresh, S. J. Cho, G. J. Park and Y. S. Lee, J. Alloy. Compd., 509 (2011) 9858.
[51] M. Selvakumar, D. K. Bhat, A. M. Aggarwal, S. P. Iyer and G. Sravani, Physica B, 405 (2010) 2286.
[52] T. Brousse, R. Marchand, P. L. Taberna and P. Simon, J. Power Sources, 158 (2006) 571.
[53] I. Tanahashi, A. Yoshida and A. Nishino, Carbon, 28 (1990) 477.
[54] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen and Y. Yang, J. Power Sources, 195 (2010) 2118.
[55] W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett., 75 (1999) 873.
[56] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
[57] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
[58] S. Y. Lin, Y. C. Chen, C. M. Wang, P. T. Hsieh and S. H. Shih, Appl. Surf. Sci., 255 (2009) 3868.
[59] C. M. Wang, S. Y. Lin and Y. C. Chen, J. Chem. Phys., 69 (2008) 451.
[60] K. C. Liu and M. A. Anderson, J. Electrochem. Soc., 143 (1996) 124.
[61] B. Tao, J. Zhang, F. Miao, S. Hui and L. Wan, Electrochim. Acta, 55 (2010) 5258.
[62] H. Honda, Carbon, 26 (1988) 139.
[63] 黃可龍、王兆翔、劉素琴,“鋰離子電池原理與關鍵技術”,化學工業出版社,2007。
[64] N. Ohshima, M. Nakada and Y. Tsukamoto, Jpn. J. Appl. Phys., 35 (1996) L1585.
[65] O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara, J. Magn. Magn. Mater., 1627 (2001) 226.
[66] I. Hotovy and D. Buc, Vacuum, 50 (1998) 41.
[67] X. Chen, X. Hu and J. Feng, Nanostruct. Mater., 6 (1995) 309.
[68] K. Bange, Sol. Energy Mater. Sol. Cells, 58 (1999) 29.
[69] P. M. Woodward and A. W. Sleight, J. Sol. State Chem., 131 (1997) 9.
[70] 溫治宇,“氧化鎢-氧化鎳互補式電致色變元件及新穎式膠態電解質之研究”,正修科技大學電機工程研究所碩士論文,2010。
[71] M. Ue, K. Ida and S. Mori, J. Electrochem. Soc., 141 (1994) 2989.
[72] M. Pham, P. Adet and G. Velasco, Appl. Phys. Lett., 48 (1986) 1348.
[73] R. Xue and I. Chen, Solid State Ion., 18-49 (1986) 1134.
[74] 袁國輝,“電化學電容器”,化學工業出版社,2006。
[75] 羅吉宗,“薄膜科技與應用”,全華科技圖書股份有限公司,2004,p.4-2。
[76] 伍秀菁、汪若文、林美吟,“真空技術與應用”,全華科技圖書股份有限公司,2001,p.360
[77] 李正中,“光學薄膜製鍍技術與應用”,行政院國科會光電小組編印,1983,p.1-29。
[78] 柯賢文,“表面與薄膜處理技術”,全華科技圖書股份有限公司,2005,p.1。
[79] 陳建人,“真空技術與應用”,行政院國家科學委員會精密儀器發展中心出版。
[80] A. J. Bard and L. R. Faulkner, “Electrochemical Principles, Methods, and Applications”, Oxford University, Britain (1996).
[81] D. Qu and H. Shi, J. Power Sources, 74 (1998) 99.
[82] A. J. Bard and L. R. Faulkner, “Electrochemical methods, fundamentals and applications”, second edition, John Wiley & Sons, Inc (1998).
[83] S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 109.
[84] E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73 (1951) 373.
[85] 汪建民,“材料分析",中國材料科學學會,1998。
[86] B. D. Cullity, “Elements of X-ray Diffraction", (1978) p.102.
[87] T. C. Weng and H. Teng, J. Electrochem. Soc., 148 (2001) A368.
[88] A. Alonso, V. Ruiz, C. Blanco, R. Santamaría, M. Granda, R. Menéndez and S. G. E. de Jager, Carbon, 44 (2006) 441.
[89] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski, Electrochim. Acta, 49 (2004) 515.
[90] A. Janes, H. Kurig and E. Lust, Carbon, 45 (2007) 1226.
[91] Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang and H. Xu, Mater. Chem. Phys., 80 (2003) 704.
[92] W. Xing, S. Z. Qiao, R. G. Ding, F. Li, G. Q. Lu, Z. F. Yan and H. M. Cheng, Carbon, 44 (2006) 216.
[93] C. Vix-Guterl, S. Saadallah, K. Jurewicz, E. Frackowiak, M. Redaa, J. Parmentier, J. Patarin and F. Beguin, Mater. Sci. Eng. B, B108 (2004) 148.
[94] H. Teng, Y. J. Chang and C. T. Hsieh, Carbon, 39 (2001) 1981.
[95] E. Elangovan, A. Marques, A. Pimentel, R. Martins and E. Fortunato, Vacuum, 82 (2008) 1489.
[96] V. Srinivasan and J. W. Weidner, J. Electrochem. Soc., 144 (1997) L210.
[97] C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 146 (1999) 3155.
[98] 方偉權,“超高電容器電極薄膜材料應用及其製作技術”,工業材料,第257期,2008,p.145。
[99] R. Kötz and M. Carlen, Electrochim. Acta, 45 (2000) 2483.
[100] 黃孟娟、張榮錡,“釕氧化物超高電容材料特性簡介”,工業材料,第182期,2002,p.120。
[101] 施泰宇,“互補式電致色變元件之研究”,正修科技大學電機工程研究所碩士論文,2009。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code