Responsive image
博碩士論文 etd-0810113-003041 詳細資訊
Title page for etd-0810113-003041
論文名稱
Title
使用稀疏高斯整數完美序列之下行梳狀頻譜分碼多工系統
A novel comb-spectrum code division multiple access downlink system using sparse gaussian integer perfect sequences
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
56
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-08-27
繳交日期
Date of Submission
2013-09-10
關鍵字
Keywords
稀疏高斯整數完美序列、梳狀頻譜分碼多工系統、分碼多工
Sparse Gaussian Integer Perfect Sequence, comb-spectrum code, CDMA
統計
Statistics
本論文已被瀏覽 5688 次,被下載 0
The thesis/dissertation has been browsed 5688 times, has been downloaded 0 times.
中文摘要
多載波分碼多工(Multi-carrier Code Division Multiple Access, MC-CDMA)系統是一個受到大家喜愛的高速率無線通訊傳輸技術,MC-CDMA 可以看成是在頻域展頻的分碼多工(Code Division Multiple Access, CDMA)系統而非在時域展頻,MC-CDMA 系統中有一個缺點就是有高峰值功率對平均功率比(Peakto-Average Power Ratio, PAPR) 。近年來有一個梳狀頻譜分碼多工(Comb Spectrum Code Division Multiple Access, CS-CDMA)系統被提出,每個用戶訊號展開到指定的子載波群組裡,此系統所使用的梳狀頻譜(Comb Spectrum, CS)碼在時域是等振幅的,因此PAPR是可以降低的,然而在頻域上的CS 碼並不是等振幅而且部分的頻譜是零,使得此系統的 BER 上升。稀疏高斯整數完美序列(Sparse Gaussian Integer Perfect Sequence, SGIPS)是一個實虛部皆為整數的複數序列,並且它的任何循環位移之間都是正交。此外,此序列中的非零值,其
數量相比序列長度要短上許多,在本論文中,提出一使用 SGIPS 為展頻碼之梳狀頻譜分碼多工系統。從模擬結果得知我們提出的系統 BER 比傳統 CS-CDMA系統的BER好,我們提出的系統用四位元相位偏移調變(Quadrature Phase Shift Keying, QPSK)在BER=10-4 時增益為3dB。
Abstract
Multi-carrier code division multiple Access (MC-CDMA) is a promising approach to the challenge of providing high data rate wireless communication. It can be interpreted as CDMA with the spreading taking place in the frequency rather than temporal domain. However, one of drawbacks of MC-CDMA systems is high peak-to-average power ratio. Recently, the comb-spectrum (CS)
CDMA system was proposed. One user’s data are spread on an assigned interleaved subcarrier group. In addition, the corresponding CS codes in the time domain are of equal magnitude. Therefore, the peak-to-average power ratio can be reduced. However, the spectrum of the CS code is not flat and parts of spectrum are zeros which cause the bit error rate (BER) degradation. A sequence of complex number is called sparse Gaussian integer perfect sequence (SGIPS) whose real parts and imaginary parts are both integers and whose any cyclic shift is orthogonal to each other. Moreover, the number of nonzero elements of GIPS is independent on the sequence length and much less than the sequence length. In this paper, the SGIPS is utilized as the spreading codes and a novel comb-spectrum code division multiple access system is proposed. From simulation results, the BER of the proposed systems is better than the traditional CS-CDMA systems. For quadrature phase shift keying, the proposed scheme gains about 3dB when BER = 10-4.
目次 Table of Contents
論文審定書..................................................................................................................... i
致謝................................................................................................................................ ii
中文摘要...................................................................................................................... iii
Abstract ......................................................................................................................... iv
目錄................................................................................................................................ v
圖次.............................................................................................................................. vii
第一章緒論.................................................................................................................. 1
1.1 研究背景 .................................................................................................................. 2
1.2 研究動機 .................................................................................................................. 3
1.3 論文架構 .................................................................................................................. 3
第二章分碼多工系統.................................................................................................. 5
2.1 CP-CDMA ....................................................................................................................... 5
2.2 CS-CDMA ....................................................................................................................... 9
第三章稀梳完美高斯序列........................................................................................ 14
3.1 完美高斯序列 .............................................................................................................. 14
3.2 疏狀完美高斯序列 ...................................................................................................... 18
第四章提出之新的梳狀頻譜分碼多工系統............................................................ 21
4.1 發射端設計 .................................................................................................................. 21
4.2 接收端設計 .................................................................................................................. 23
4.3 系統效能分析 .............................................................................................................. 24
第五章模擬結果與討論............................................................................................ 27
5.1 各系統的錯誤率比較 .................................................................................................. 27
5.2 PAPR 效能的比較 ........................................................................................................ 33
第六章結論................................................................................................................ 36
參考文獻...................................................................................................................... 37
中英對照表.................................................................................................................. 42
縮寫對照表.................................................................................................................. 46
參考文獻 References
[1] S. Hara and R. Prasad, “DS-CDMA, MC-CDMA and MT-CDMA for mobile
multi-media communications,” Proc. of IEEE VTC, vol. 2, no. 5, pp.1106–1110,
Apr. 1996.
[2] S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun.
Mag., vol. 35, no. 12, pp.126–133, Dec. 1997.
[3] A. C. McCormick and E. A. AI-Susa, “Multicarrier CDMA for future generation
mobile communication,” IEEE Electron. & Commun. Eng., vol. 14, no. 5,
pp.52–60, Apr. 2002.
[4] W. C. Y. Lee, “Overview of cellular CDMA,” IEEE Trans. Veh. Technol., vol.
40, no. 2, pp. 291–302, May 1991.
[5] L. Vandendorpe, “Multi-tone spread spectrum multiple access communications
system in a multipath Rician fading channel,” IEEE Trans. Veh. Technol., vol.
44, no. 4, pp. 327–337, 1995.
[6] R. Prasad and T. Ojanpera, “An over view of CDMA evolution towards
wideband CDMA,” IEEE Commun. Surveys. vol. 1, no. 1, pp. 2–29, 1998.
[7] M. Guenach and H. Steendam, “Performance evaluation and parameter
optimization of MC-CDMA,” IEEE Trans. Veh. Technol., vol. 56, no.3, pp.
1165–1175, Mar. 2007.
[8] R. M. Buehrer and B. D. Woerner, “Analysis of adaptive multistage interference
cancellation for CDMA using an improved Gaussian approximation,” IEEE
Trans. Commun., vol. 44, no. 10, pp. 1308–1321, Oct. 1996.
[9] C. W. You and D. S. Hong, “Multicarrier CDMA systems using time-domain
and frequency-domain spreading codes,” IEEE Trans. Commun., vol. 51, no. 1,pp. 17–21, Jan. 2003.
[10] L. L. Yang and L. Hanzo, “Performance of broadband multicarrier DS-CDMA
using space–time spreading-assisted transmit diversity,” IEEE Trans. Wireless
Commun., vol. 4, no. 3, pp. 885–894, May 2005.
[11] A. Kaul and B. D. Woerner, “Analytic limits on performance of adaptive
multistage interference cancellation for CDMA,” IEEE Electron. Lett., vol. 30,
no. 25, pp. 2093–2095, Dec. 1994.
[12] K. S. Gilhousen, I. M. Jacobs, R. Padovani, A. J. Viterbi, L. A. Weaver, Jr., and
C. E. Wheatley, “On the capacity of a cellular CDMA system,” IEEE Trans.
Veh. Technol., vol. 40, no. 11, pp. 303-312, May 1991.
[13] S. Hara and R. Prasad, “Design and performance of multicarrier CDMA system
in frequency selective fading channel,” IEEE Tran. Veh. Technol., vol. 48, no. 5,
pp.1584–1595, Sep. 1999.
[14] E. A. Sourour and M. Nakagawa, “Performance of orthogonal multicarrier
CDMA in a multipath fading channel,” IEEE Trans. Commun., vol. 44, no. 3, pp.
356–367, Mar. 1996.
[15] K. L. Baum, T. A. Thomas, F. W. Vook, and V. Nangia, “Cyclic-prefix CDMA:
an improved transmission method for broadband DS-CDMA cellular systems,"
in Proc. IEEE Wireless Commun. Netw. Conf., vol. 1, no.3, Orlando, FL, Mar.
2002, pp. 183–188.
[16] S. Nobilet and J.-F. Herald, “A pre-equalization technique for uplink
MC-CDMA systems using TDD and FDD modes," in Proc. IEEE 56th Veh.
Technol. Conf., vol. 1, Vancouver, BC, Canada, Oct. 2002, pp. 24–28.
[17] S. He and M. Torkelson, “Computing partial DFT for comb spectrum
evaluation," IEEE Signal Process. Lett., vol. 3, no. 6, pp. 173-175, Jun. 1996.
[18] S. Kondo and L. B. Milstein, “Performance of multi-carrier DS-CDMA systems”, IEEE Trans. Commun., vol. 44, no. 2, pp.238–246, Feb. 1996.
[19] X. Cai, S. Zhou, and G. Giannakis, “Group-orthogonal multicarrier CDMA,"
IEEE Trans. Commun., vol. 52, no. 1, pp. 90–99, Jan. 2004.
[20] S. Tsumura, S. Hara, and Y. Hara, “Performance comparison of MC-CDMA and
cyclically prefixed DS-CDMA in an uplink channel," in Proc. IEEE 60th Veh.
Technol. Conf., vol. 1, Los Angeles, CA, Sep. 2004, pp. 414–418.
[21] H. Cheng, M. Ma, and B. Jiao, “A novel type of code design for the CP-CDMA
system: Comb spectrum grouped codes," in Proc. IEEE 60th Veh. Technol.
Conf., vol. 1, Los Angeles, CA, Sep. 2004, pp.729–733.
[22] H. Cheng, M. Ma, and B. Jiao, “Comb spectrum code and its enabled multiple
access scheme," in Proc. IEEE 62nd Veh. Technol. Conf., vol. 3, Dallas, TX,
Sep. 2005, pp. 2048–2056.
[23] H. Cheng, Y. D. Yao, and B. Jiao, “Comparison of CS-CDMA and MC-CDMA :
BER and PAPR” in Proc. IEEE Military Commun., San Diego, CA, Nov. 2008,
pp.1–5.
[24] H. Cheng, M. Ma, and B. Jiao, “On the design of comb spectrum code for
multiple access scheme,” IEEE Trans. on Commun., vol. 57, no. 3, Mar. 2009,
pp. 754–763.
[25] R. L. Frank and S. A. Zadoff, “Phase shift pulse codes with good periodic
correlation properties,” IEEE Trans. Inf. Theory, vol. 8, no. 6, pp.381–382, Oct.
1962.
[26] D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE
Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, Jul. 1972.
[27] N. Y. Yu and G. Gong, “New binary sequences with optimal autocorrelation
magnitude,” IEEE Trans. Inf. Theory, vol. 54, no. 10, pp. 4771–4779, Oct. 2008.
[28] T. Hoholdt and J. Justesen, “Ternary sequences with perfect periodic autocorrelation,” IEEE Trans. Inf. Theory, vol. 29, no. 4, pp. 597–600, Jul. 1983.
[29] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum
correlation properties,” IEEE Trans. Inf. Theory, vol. 38, no. 4, pp. 1406–1409,
Jul. 1992.
[30] P. Z. Fan and M. Darnell, “Maximal length sequences over Gaussian integers,”
Inst. Electr. Eng. Electron. Lett., vol. 30, no. 16, pp. 1286–1287, Aug. 1994.
[31] K. Choi and H. Liu, “Polyphase scrambled Walsh codes for zero-correlation
zone extension in QS-CDMA,” IEEE Commun. Lett., vol. 16, no. 4, pp.
429–431, Apr. 2012.
[32] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC
MIMO-OFDM systems," IEEE Signal Process. Lett., vol. 16, no. 11, pp.
941-944, Nov. 2009.
[33] C.-P. Li, and W.-C. Huang, “Semi-blind channel estimation using superimposed
training sequences with constant magnitude in dual domain for OFDM systems,”
in Proc. IEEE Veh. Technol. Conf., vol. 4, pp. 1575-1579, May 2006.
[34] W.-W. Hu, S.-H. Wang, and C.-P. Li, “A synchronization scheme for OFDM
systems using the super-imposed perfect sequences,” in Proc. 2008 IEEE Int.
Symp. on Broadband Multimedia Syst. and Broadcast., Las Vegas, NV, USA,
Mar. 2008.
[35] S.-H Wang, J.-C Xie, and C-P Li, “A low-complexity SLM PAPR reduction
scheme for interleaved OFDMA uplink,” in Proc. 2009 IEEE 52th Global
Commun. Conf., Honolulu, HI, USA, Nov. 2009.
[36] S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR
reduction in OFDM systems," IEEE Trans. on Signal Process., vol. 58, no. 5,pp. 2916-2921, May 2010.
[37] W.-W. Hu, S.-H. Wang, and C.-P. Li, “Gaussian integer sequences with ideal
periodic autocorrelation functions,” in Proc. 2011 IEEE Int. Conf. on Commun.,
Kyoto, Japan, Jun. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.95.39.127
論文開放下載的時間是 校外不公開

Your IP address is 3.95.39.127
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code