Responsive image
博碩士論文 etd-0810113-181911 詳細資訊
Title page for etd-0810113-181911
論文名稱
Title
應用解析格林函數探討不同初始波形的海嘯溯上高度
Tsunami Runup Height of Various Initial Waveforms Using Analytical Green’s Function
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-24
繳交日期
Date of Submission
2013-09-10
關鍵字
Keywords
解析格林函數、溯上、數值模式、海嘯
analytical Green’s function, runup, numerical models, tsunami
統計
Statistics
本論文已被瀏覽 5728 次,被下載 504
The thesis/dissertation has been browsed 5728 times, has been downloaded 504 times.
中文摘要
本研究根據Carrier(2003)等人所提出的CWY方法模擬海嘯初始波形並可快速計算傳遞至近岸時的溯上高度,理論基礎為一維完全非線性淺水方程且在等坡度地形上,以不同的初始波形條件求得所有可能的波形並找出影響最嚴重的波形,此法所得到的格林函數水位則稱解析格林函數(AGF),可用來建立臺灣沿海近岸區域之解析格林函數合併現有之海嘯波高資料庫以利提升預報效率。
不同振幅比值(A1/A2)所建置出的任意波形的結果顯示,以A2為負所得到的PG wave(A1/A2 =0)及M1 wave(A1/A2 =1.2)相較於其他波形有較高的溯上高度及溢淹距離。再以PG wave做連續波形變化得到的結果大致相同,故以一PG wave即可得到最嚴重的結果。而將PG wave與M1 wave做類波數參數(k)變化即週期改變的結果則以M1 wave有較嚴重的結果於k1 = 33,k2 = 1.69,k1 /k2 =19.5266的波形,其可能為兩波的溯上疊合而造成嚴重結果。k的變化所得到的M1 wave結果是在固定兩波的時間及空間間距下,縮短兩波的間距x01 與x02 差值為1的情況下則會得到最嚴重的結果。另採用海嘯數值模式COMCOT代入等坡度地形及實際地形模擬並證明與CWY方法有一致的結果。
Abstract
According to the CWY approach derived by Carrier et al. (2003) based on 1-D fully nonlinear shallow water equations over a uniform constant slope, it can have all possible waveforms for the conditions of various initial waveforms, then determine the highest runup height. The arbitrary water elevation is called analytical Green’s function (AGF) by CWY. It can be developed a fast forecast system for the tsunami elevation beside the inshore coasts of Taiwan based on the analytical Green’s function.
The different amplitude ratios (A1/A2) can generate the arbitrary waveforms, it is shown that the PG wave (A1/A2 =0) and the M1 wave (A1/A2 =1.2) has the highest runup height and the farest inundation distance comparing with other possible waveforms as A2 is negative. Additionally, the continuous PG wave result is coincident with the single PG wave. Then change the parameter k that mean period of the two waveforms, it is shown that the M1 wave (k1=33, k2=1.69, k1 /k2=19.5266) has the higher runup height then the PG wave. It may be resulted from the overlap of the runup of the two wave. The temporal interval t01 and t02 are fixed at the before mentioned, Then to shortened the temporal interval x01 and x02 , as it equal to 1, has the worsest result. To verify the CWY approach, simulations on Cornell Multigrid Coupled Tsunami (COMCOT) model is also executed and the results agrees well with the CWY results.
目次 Table of Contents
摘要 ........................................................................................................................................ i
Abstract .................................................................................................................................. ii
目錄 ...................................................................................................................................... iii
圖目錄 ................................................................................................................................... v
表目錄 ................................................................................................................................ viii
第一章 緒論 .......................................................................................................................... 1
1.1 前言 ..................................................................................................................... 1
1.2 研究動機與目的 ................................................................................................. 2
1.3 本文內容 ............................................................................................................. 4
第二章 文獻回顧 .................................................................................................................. 5
2.1 海嘯的模擬 ......................................................................................................... 5
2.2 格林函數 ............................................................................................................. 7
第三章 研究方法 .................................................................................................................. 8
3.1 CWY方法 ............................................................................................................ 8
3.1.1 初始波形 ................................................................................................. 13
3.2 COMCOT模式 .................................................................................................. 18
第四章 模擬結果 ................................................................................................................ 19
4.1 CWY方法模擬結果 .......................................................................................... 19
4.1.1 不同振幅比(A1/A2)的波形比較 ........................................................ 21
4.1.2 嚴重結果的波形之變化比較 ................................................................. 27
4.1.3 不同類波數參數k的波形比較 ............................................................. 32
IV
4.1.4 不同初始波形空間差(x02-x01)之變化比較 ....................................... 39
4.1.5 不同坡度的綜合比較 ............................................................................. 43
4.2 CWY方法與COMCOT的驗證及比較結果 ................................................... 48
4.2.1 在等斜坡地形下之CWY方法與COMCOT結果比較 ...................... 48
4.2.2 在實際地形下之CWY方法與COMCOT結果比較 .......................... 52
第五章 結論 ........................................................................................................................ 56
參考文獻 .............................................................................................................................. 57
附錄一 CWY方法-二階偏微分解ψ及格林函數G之演算 ........................................ 60
附錄二 COMCOT模式 .................................................................................................... 62
參考文獻 References
1. 徐明同(1981),海嘯所引起之災害,中央氣象局氣象學報,第27卷1期,頁1-15。
2. 許明光、李起彤(1996),臺灣及其鄰近地區之海嘯,臺灣海洋學刊,第35期1號,頁1-16。
3. 劉俊志、陳冠宇(2008),以互逆格林函數快速預報高雄港外海嘯高度,中華民國第30屆海洋工程研討會,頁93-97。
4. 黃煌煇(2005),海嘯的模擬,科學發展,第394期,頁46-51。
5. 陳冠宇、邱永芳、姚建中、連政佳、劉俊志、林敬樺(2012),臺北港與基隆港之海嘯風險評估,前瞻科技與管理,第二卷第二期,頁147-166。
6. 陳冠宇(2007,6月),淺談海嘯及其數值模擬,港灣報導,No.77,頁10-17。
7. 陳冠宇、陳陽益(2011),臺灣沿岸海嘯影響範圍與淹水潛勢分析(4/4),交通部運輸研究所合作研究計劃期末報告,中華民國交通部運輸研究所。
8. 陳韻如(2008),2006年屏東外海地震引發海嘯的數值模擬探討,國立中央大學水文科學研究所碩士論文。
9. 陳伯飛、蕭乃棋、林伯佑(2009),利用單位海嘯模擬來建立臺灣海域近海海嘯預報系統,交通部中央氣象局研究成果報告。
10. 張孟挺(2008),臺灣的海嘯威脅與高雄市溢淹之模擬,國立中山大學海下科技暨應用海洋物理研究所碩士論文。
11. Carrier, G. F., and Greenspan, H. P.(1958)“Water Ws of Finite Amplitude on a Sloping Beach, ” J. Fluid Mech., 4, 97-109.
12. Carrier, G. F., Wu, T. T., and Yeh, H.(2003)“Tsunami runup and Drawdown on a Plane Beach, ” J. Fluid Mech., vol. 475, 79-99.
13. Chen, G. Y., Lin C.H. , Liu C. C.(2012)“ Quick Evaluation of Runup Height and Inundation Area for Early Warning of Tsunami, ” Journal of Earthquake and Tsunami, 6(1), 1250005, 1-23, DOI: 10.1142/S1793431112500054.
14. Didenkulova, I., Pelinovsky , E., Soomere , T.(2008)“Runup Characteristics of Symmetrical Solitary Tsunami Waves of “Unknown” Shapes, ” Pure and Applied Geophysics.165, 1-16.
58
15. Imamura, F.(2006)“Tsunami modeling manual. ” School of Civil Eng., DCRC, Tohoku Univ.
16. Korteweg, D.J. , de Vries G.(1895), "On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves", Philosophical Magazine, 5th series 39, pp.422–443 .
17. Loomis, H.G.(1979)“Tsunami prediction using the reciprocal property of Green‘s functions, ” Mar. Geod., 2(1), 27-39.
18. Liu, P.L.-F., Synolakis, C. E. & Yeh, H. H.(1991). Report on the international workshop on long-wave run-up. Journal of Fluid Mechanics., 229, 675-688.
19. Liu, P.L.-F., Cho, Y.-S., Yoon, S.-B., & Seo, S.-N.(1995b). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Tsuchiya, Shuto (Eds.), Tsunami: Progress in Prediction, Disaster Prevention and Warning(99-115). Netherlands:Kluwer Academic Publishers.
20. Liu, P. L.-F., S. B. Woo & Y. S. Cho(1998). Computer programs for tsunami propagation and inundation. Cornell University.
21. Liu, P. L.-F. et al.(2005). Observations by the International Tsunami Survey Team in Sri Lanka, Science, 308, 1595.
22. Manshinha, L., & Smylie, D. E.(1971). The displacement fields of inclines faults. Bulletin of the Seismological Society of America, 61, 1433-1440. 23. Russell, J. Scott(1844),Report on Waves, Report of the 14th Meeting of the British Association for the Advancement of Science, pp.311-390.
24. Shuto N.(1991), “Numerical Simulation of Tsunamis-Its Present and Near Future, ” Natural Hazards , 4, 171-191.
25. Synolakis, C. E.(1987)“The runup of solitary waves. ” Journal of Fluid Mechanics, 185, 523-545.
26. Titov, V. V. & F. I. Gonzalez(1997). Implementation and testing of the method of splitting tsunami (MOST) model. NOAA/Pacific Marine Environmental Laboratory.
27. Wang, X., Liu, P.L.-F.(2005). Preliminary simulation of 1986 & 2002 Taiwan Hualien Tsunami. Cornell University.
28. Wang, X., Liu, P.L.-F.(2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Engineering and
59
Research, 44(2), 147-154.
29. Wang X., Liu P.L.-F.(2007). Numerical simulations of the 2004 indian ocean tsunamis - coastal effects. Journal of Earthquake and Tsunami, 1(3), 273-297.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code