Responsive image
博碩士論文 etd-0810113-185817 詳細資訊
Title page for etd-0810113-185817
論文名稱
Title
珊瑚衍生物之抗肝癌作用
The effects of coral-derived compound on anti-hepatocellular carcinoma.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-22
繳交日期
Date of Submission
2013-09-11
關鍵字
Keywords
移動、聚落形成、肝癌、凋亡、血管新生、斑馬魚
hepatocellular carcinoma, migration, colony formation, angiogenesis, zebrafish, apoptosis
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
近年來,許多海洋天然物或其衍生物已被科學家證實具有豐富的生物活性,特別是做為抗癌藥物。肝癌是世界上最常發生的致死癌症之一,在台灣及許多開發中國家與都造成嚴重的負擔。然而,目前的抗肝癌治療卻也存在許多副作用的問題。先前有研究指出台灣產指型軟珊瑚Sinularia flexibilis萃取物具有抗癌功效。因此,本研究以取自同種類珊瑚的萃取物WY-12來分析其抗肝癌與抗血管新生之作用。實驗結果發現,WY-12可以顯著地抑制人類肝癌細胞SK-hep1的存活、移動、侵犯、聚落生成和非貼附型生長的能力,並發現WY-12會促進SK-hep1細胞有絲分裂活化蛋白質激酶酶(mitogen-activated protein kinase, MAPK)之p38 MAPK磷酸化與增加第一型血紅素氧化酶(heme oxygenase-1, HO-1)與上皮細胞鈣粘蛋白(epithelial cadherin, E-cadherin)蛋白質表現量;並可抑制細胞外訊號調節激酶(extracellular signal-regulated kinase, ERK)活化與纖維狀肌動蛋白(fibrous actin, F-actin)的表現。此外,亦發現到WY-12可以顯著地抑制人類臍靜脈內皮細胞EA.hy926的存活與移動,且可抑制eNOS蛋白質表現量。在活體的實驗中也發現,WY-12可以抑制斑馬魚仔魚的體節間血管的血管新生。綜合以上結果顯示,WY-12具有多功能性抗肝癌的功效,以及同時具有抑制血管新生的潛力。
Abstract
In recent years, many marine natural products and their derivatives were found to have a variety of biological activities, especially for cancer drugs. Hepatocellular carcinoma (HCC) is one of the most common lethal cancers in the world, and become a heavy burden in many developing countries, including Taiwan. However, there are many side effects exist in current therapies of HCC. The extracts form soft coral Sinularia flexibilis were reported to have anti-cancer effects, and WY-12 is one of the compound origins from the soft coral. Hence, the aim of this study is to analyze whether WY-12 has the properties of anti-HCC and anti-angiogenesis. The present study shows that WY-12 could inhibit viability, migration, invasion, colony formation and anchorage-independent growth of the human HCC cell, SK-hep1. Western blotting and immunocytochemistry analysis indicated that WY-12 increased the level of pp38, HO-1 and E-cadherin, but decreased the expression of pERK and F-actin. Besides, WY-12 could also reduce viability and migration of the human umbilical vein endothelial cell line, EA.hy926, and suppress the expression of eNOS protein. The zebrafish data suggests that WY-12 has anti-angiogenesis effect. In conclusion, these results demonstrate that WY-12 seems to have multiple anticancer effects in HCC, and have the potential for anti-angiogenesis.
目次 Table of Contents
論文審定書................................................................................................i
誌謝..........................................................................................................ii
摘要..........................................................................................................iii
Abstract....................................................................................................iv
目錄..........................................................................................................v
圖次..........................................................................................................viii
表次..........................................................................................................x
英文縮寫對照表..........................................................................................xi
前言..........................................................................................................1
流行病學統計.........................................................................................1
肝癌之危險因子......................................................................................1
癌症的特徵............................................................................................1
肝癌的訊息傳遞......................................................................................2
肝癌之臨床治療......................................................................................4
海洋藥物與癌症......................................................................................5
研究動機與目的......................................................................................8
實驗材料與方法..........................................................................................9
細胞種類與培養條件...............................................................................9
細胞繼代培養.........................................................................................9
細胞計數...............................................................................................9
細胞存活率測試.....................................................................................10
細胞型態觀察........................................................................................10
免疫細胞化學染色(immunocytochemistry)...........................................10
細胞聚落形成(colony formation assay)................................................11
軟性瓊脂膠體聚落形成試驗(soft agar colony formation assay)...............11
傷口癒合細胞移動能力試驗(wound healing assay)................................12
Boyden chamber細胞侵犯(invasion)能力試驗.......................................12
Boyden chamber細胞移動能力測試.........................................................13
細胞凋亡測試(顯微鏡觀察).................................................................13
細胞凋亡測試(流式細胞儀).................................................................14
Caspase 3活性測試...............................................................................14
核內蛋白質萃取(nuclear extraction)....................................................15
西方點墨法(Western blot)..................................................................16
斑馬魚種魚飼養.....................................................................................17
斑馬魚胚胎取得.....................................................................................18
斑馬魚藥物處理.....................................................................................18
觀察斑馬魚體節間血管新生.....................................................................18
數據統計分析........................................................................................18
實驗結果...................................................................................................19
一、WY-12對肝癌的抑制作用...................................................................19
WY-12對人類肝癌細胞SK-hep1存活的影響..........................................19
WY-12對人類肝癌細胞SK-hep1存活相關之蛋白質表現的影響.................20
WY-12對人類肝癌細胞SK-hep1聚落生長之影響....................................21
WY-12對人類肝癌細胞SK-hep1移動與侵犯(invasion)之影響...............22
WY-12對結締組織生長因子促進肝癌細胞SK-hep1移動之抑制作用..........23
WY-12對肝癌細胞SK-hep1之HO-1蛋白質表現的影響.............................24
二、WY-12對血管新生的抑制作用.............................................................24
WY-12對人類臍靜脈內皮細胞株EA.hy926存活之影響............................24
WY-12對人類臍靜脈內皮細胞株EA.hy926移動能力之影響......................25
WY-12對基因轉殖Tg(fli1:EGFP)血管螢光斑馬魚胚胎之體節間血管
(intersegmental vessel, ISV)形成的影響...............................................25
WY-12對肝癌細胞SK-hep1條件培養基(conditioned medium, CM)誘導
人類臍靜脈內皮細胞株EA.hy926移動的影響..........................................26
WY-12對人類臍靜脈內皮細胞株EA.hy926之eNOS蛋白質表現的影響.......26
討論...........................................................................................................59
WY-12對於人類肝癌細胞SK-hep1存活的抑制作用......................................59
WY-12導致人類肝癌細胞SK-hep1凋亡......................................................60
WY-12對於人類肝癌細胞SK-hep1聚落生長的抑制作用...............................63
WY-12對於人類肝癌細胞SK-hep1移動與侵犯的抑制作用............................64
WY-12對結締組織生長因子促進肝癌細胞移動的抑制作用...........................65
HO-1與肝癌之交互作用...........................................................................66
WY-12對血管新生的抑制作用..................................................................67
總結..........................................................................................................71
未來展望....................................................................................................71
參考文獻....................................................................................................72
參考文獻 References
1. Ferlay, J., et al., Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 2010. 127(12): p. 2893-917.
2. Perz, J.F., et al., The contributions of hepatitis B virus and hepatitis C virus infections to cirrhosis and primary liver cancer worldwide. J Hepatol, 2006. 45(4): p. 529-38.
3. Nordenstedt, H., D.L. White, and H.B. El-Serag, The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis, 2010. 42 Suppl 3: p. S206-14.
4. Ohata, K., et al., Hepatic steatosis is a risk factor for hepatocellular carcinoma in patients with chronic hepatitis C virus infection. Cancer, 2003. 97(12): p. 3036-43.
5. Gomaa, A.I., et al., Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol, 2008. 14(27): p. 4300-8.
6. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
7. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
8. Fresno Vara, J.A., et al., PI3K/Akt signalling pathway and cancer. Cancer Treat Rev, 2004. 30(2): p. 193-204.
9. Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34.
10. Whittaker, S., R. Marais, and A.X. Zhu, The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene, 2010. 29(36): p. 4989-5005.
11. Nakagawa, H. and S. Maeda, Inflammation- and stress-related signaling pathways in hepatocarcinogenesis. World J Gastroenterol, 2012. 18(31): p. 4071-81.
12. Iyoda, K., et al., Involvement of the p38 mitogen-activated protein kinase cascade in hepatocellular carcinoma. Cancer, 2003. 97(12): p. 3017-26.
13. Singal, A., et al., Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther, 2009. 30(1): p. 37-47.
14. Forner, A., J.M. Llovet, and J. Bruix, Hepatocellular carcinoma. Lancet, 2012. 379(9822): p. 1245-55.
15. Cheng, A.L., et al., Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol, 2009. 10(1): p. 25-34.
16. Pang, R. and R.T. Poon, Angiogenesis and antiangiogenic therapy in hepatocellular carcinoma. Cancer Lett, 2006. 242(2): p. 151-67.
17. Fang, P., et al., Efficacy and safety of bevacizumab for the treatment of advanced hepatocellular carcinoma: a systematic review of phase II trials. PLoS One, 2012. 7(12): p. e49717.
18. Xie, B., D.H. Wang, and S.J. Spechler, Sorafenib for treatment of hepatocellular carcinoma: a systematic review. Dig Dis Sci, 2012. 57(5): p. 1122-9.
19. Adnane, L., et al., Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol, 2006. 407: p. 597-612.
20. Wilhelm, S.M., et al., BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res, 2004. 64(19): p. 7099-109.
21. Llovet, J.M., et al., Sorafenib in advanced hepatocellular carcinoma. N Engl J Med, 2008. 359(4): p. 378-90.
22. Newman, D.J. and G.M. Cragg, Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod, 2012. 75(3): p. 311-35.
23. Erwin, P.M., S. Lopez-Legentil, and P.W. Schuhmann, The pharmaceutical value of marine biodiversity for anti-cancer drug discovery. Ecological Economics, 2010. 70(2): p. 445-451.
24. Walsh, P.J., et al., Oceans and Human Health: Risks and Remedies from the Seas. 1 ed2008: Academic Press. 672.
25. Sampath, D., V.A. Rao, and W. Plunkett, Mechanisms of apoptosis induction by nucleoside analogs. Oncogene, 2003. 22(56): p. 9063-74.
26. Uemura, D., et al., Norhalichondrin A: an antitumor polyether macrolide from a marine sponge. J Am Chem Soc, 1985. 107(16): p. 4796-4798.
27. Huyck, T.K., et al., Eribulin mesylate. Nat Rev Drug Discov, 2011. 10(3): p. 173-4.
28. Gajdos, C. and A. Elias, Trabectedin: safety and efficacy in the treatment of advanced sarcoma. Clin Med Insights Oncol, 2011. 5: p. 35-43.
29. Cooper, E.L. and D. Yao, Diving for drugs: tunicate anticancer compounds. Drug Discov Today, 2012. 17(11-12): p. 636-48.
30. Younes, A., U. Yasothan, and P. Kirkpatrick, Brentuximab vedotin. Nat Rev Drug Discov, 2012. 11(1): p. 19-20.
31. Katz, J., J.E. Janik, and A. Younes, Brentuximab Vedotin (SGN-35). Clin Cancer Res, 2011. 17(20): p. 6428-36.
32. Gerwick, W.H. and B.S. Moore, Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol, 2012. 19(1): p. 85-98.
33. Molinski, T.F., et al., Drug development from marine natural products. Nat Rev Drug Discov, 2009. 8(1): p. 69-85.
34. Kepp, O., et al., Cell death assays for drug discovery. Nat Rev Drug Discov, 2011. 10(3): p. 221-37.
35. Lowry, O.H., et al., Protein measurement with the Folin phenol reagent. J Biol Chem, 1951. 193(1): p. 265-75.
36. Xiu, M., et al., Connective tissue growth factor is overexpressed in human hepatocellular carcinoma and promotes cell invasion and growth. World J Gastroenterol, 2012. 18(47): p. 7070-8.
37. Zeng, Z.J., et al., Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World J Gastroenterol, 2004. 10(23): p. 3414-8.
38. Jiang, W., et al., Dual effects of sodium butyrate on hepatocellular carcinoma cells. Mol Biol Rep, 2012. 39(5): p. 6235-42.
39. Jung, M.Y., S.K. Kwon, and A. Moon, Chemopreventive allylthiopyridazine derivatives induce apoptosis in SK-Hep-1 hepatocarcinoma cells through a caspase-3-dependent mechanism. Eur J Cancer, 2001. 37(16): p. 2104-10.
40. Boulares, A.H., et al., Acetaminophen induces a caspase-dependent and Bcl-XL sensitive apoptosis in human hepatoma cells and lymphocytes. Pharmacol Toxicol, 2002. 90(1): p. 38-50.
41. Ma, C.Y., et al., Butein inhibits the migration and invasion of SK-HEP-1 human hepatocarcinoma cells through suppressing the ERK, JNK, p38, and uPA signaling multiple pathways. J Agric Food Chem, 2011. 59(16): p. 9032-8.
42. Lin, L.I., et al., Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology, 1998. 55(4): p. 349-53.
43. Huang, C.S., et al., Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells. J Nutr, 2005. 135(9): p. 2119-23.
44. Zhang, Z., et al., Phosphorylated ERK is a potential predictor of sensitivity to sorafenib when treating hepatocellular carcinoma: evidence from an in vitro study. BMC Med, 2009. 7: p. 41.
45. Wang, M., et al., Curcumin induced HepG2 cell apoptosis-associated mitochondrial membrane potential and intracellular free Ca(2+) concentration. Eur J Pharmacol, 2011. 650(1): p. 41-7.
46. Liang, Y., et al., Diphenyl difluoroketone: a potent chemotherapy candidate for human hepatocellular carcinoma. PLoS One, 2011. 6(8): p. e23908.
47. Neerman, M.F., et al., In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm, 2004. 281(1-2): p. 129-32.
48. Weng, C.J., et al., Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activating MAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. N Biotechnol, 2011. 28(6): p. 767-77.
49. Hwang, J.Y., et al., Protective role of litchi (Litchi chinensis Sonn.) flower extract against cadmium- and lead-induced cytotoxicity and transforming growth factor β1-stimulated expression of smooth muscle α-actin estimated with rat liver cell lines. J Funct Foods, 2013. 5(2): p. 698-705.
50. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
51. Cotter, T.G., Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer, 2009. 9(7): p. 501-7.
52. Shin, E.C., et al., Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med, 2002. 34(2): p. 114-22.
53. Fabregat, I., Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol, 2009. 15(5): p. 513-20.
54. Bedner, E., et al., Analysis of apoptosis by laser scanning cytometry. Cytometry, 1999. 35(3): p. 181-95.
55. Takahashi, M., et al., Overexpression of Bcl-2 protects human hepatoma cells from Fas-antibody-mediated apoptosis. J Hepatol, 1999. 31(2): p. 315-22.
56. Zhang, J.F., et al., Rapamycin inhibits cell growth by induction of apoptosis on hepatocellular carcinoma cells in vitro. Transpl Immunol, 2007. 17(3): p. 162-8.
57. Moon, D.O., et al., Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett, 2010. 288(2): p. 204-13.
58. Datta, S.R., A. Brunet, and M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): p. 2905-27.
59. Pugazhenthi, S., et al., Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem, 2000. 275(15): p. 10761-6.
60. Nakanishi, K., et al., Akt phosphorylation is a risk factor for early disease recurrence and poor prognosis in hepatocellular carcinoma. Cancer, 2005. 103(2): p. 307-12.
61. Wagner, E.F. and A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer, 2009. 9(8): p. 537-49.
62. Wang, W.Z., et al., Curcumin induces FasL-related apoptosis through p38 activation in human hepatocellular carcinoma Huh7 cells. Life Sci, 2013. 92(6-7): p. 352-8.
63. Han, Z., et al., A sequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem, 1997. 272(20): p. 13432-6.
64. Sun, B. and M. Karin, NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene, 2008. 27(48): p. 6228-44.
65. Zhao, J.J., et al., Identification of LZAP as a new candidate tumor suppressor in hepatocellular carcinoma. PLoS One, 2011. 6(10): p. e26608.
66. Liu, R.F., et al., Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett, 2013. 329(2): p. 164-73.
67. Chui, C.H., et al., In vitro anti-cancer activity of a novel microbial fermentation product on human carcinomas. Int J Mol Med, 2006. 17(4): p. 675-9.
68. Wang, X., et al., Potential anticancer activity of litchi fruit pericarp extract against hepatocellular carcinoma in vitro and in vivo. Cancer Lett, 2006. 239(1): p. 144-50.
69. Frisch, S.M. and R.A. Screaton, Anoikis mechanisms. Curr Opin Cell Biol, 2001. 13(5): p. 555-62.
70. Nakanishi, K., et al., Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res, 2002. 62(10): p. 2971-5.
71. Xing, Z., et al., The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function. Biochem Biophys Res Commun, 2011. 409(2): p. 193-9.
72. Zhao, J., et al., TIP30 inhibits growth of HCC cell lines and inhibits HCC xenografts in mice in combination with 5-FU. Hepatology, 2006. 44(1): p. 205-15.
73. Rui-Chuan, C., et al., Induction of differentiation in human hepatocarcinoma cells by isoverbascoside. Planta Med, 2002. 68(4): p. 370-2.
74. Steeg, P.S., Tumor metastasis: mechanistic insights and clinical challenges. Nat Med, 2006. 12(8): p. 895-904.
75. Wiesenauer, C.A., et al., Multiple anticancer effects of blocking MEK-ERK signaling in hepatocellular carcinoma. J Am Coll Surg, 2004. 198(3): p. 410-21.
76. Huang, G.J., et al., Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J Agric Food Chem, 2010. 58(17): p. 9468-75.
77. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
78. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
79. Berx, G. and F. van Roy, Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol, 2009. 1(6): p. a003129.
80. Lamalice, L., F. Le Boeuf, and J. Huot, Endothelial cell migration during angiogenesis. Circ Res, 2007. 100(6): p. 782-94.
81. Chen, L., et al., CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Invest, 2010. 120(4): p. 1178-91.
82. Brigstock, D.R., The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. Endocr Rev, 1999. 20(2): p. 189-206.
83. Mazzocca, A., et al., Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology, 2010. 51(2): p. 523-34.
84. Tenhunen, R., H.S. Marver, and R. Schmid, The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A, 1968. 61(2): p. 748-55.
85. Tenhunen, R., H.S. Marver, and R. Schmid, Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem, 1969. 244(23): p. 6388-94.
86. Jozkowicz, A., H. Was, and J. Dulak, Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal, 2007. 9(12): p. 2099-117.
87. McCoubrey, W.K., Jr., T.J. Huang, and M.D. Maines, Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem, 1997. 247(2): p. 725-32.
88. Was, H., J. Dulak, and A. Jozkowicz, Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets, 2010. 11(12): p. 1551-70.
89. Zou, C., et al., Heme oxygenase-1: a molecular brake on hepatocellular carcinoma cell migration. Carcinogenesis, 2011. 32(12): p. 1840-8.
90. Dong, Z., et al., Heme oxygenase-1 in tissue pathology: the Yin and Yang. Am J Pathol, 2000. 156(5): p. 1485-8.
91. Suttner, D.M. and P.A. Dennery, Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J, 1999. 13(13): p. 1800-9.
92. Yang, G., et al., Unique effects of zinc protoporphyrin on HO-1 induction and apoptosis. Blood, 2001. 97(5): p. 1306-13.
93. Risau, W., Mechanisms of angiogenesis. Nature, 1997. 386(6626): p. 671-4.
94. Carmeliet, P., Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000. 6(4): p. 389-95.
95. Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6.
96. Folkman, J., Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg, 1972. 175(3): p. 409-16.
97. Samant, R.S. and L.A. Shevde, Recent advances in anti-angiogenic therapy of cancer. Oncotarget, 2011. 2(3): p. 122-34.
98. Park, Y.N., et al., Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med, 2000. 124(7): p. 1061-5.
99. Semela, D. and J.F. Dufour, Angiogenesis and hepatocellular carcinoma. J Hepatol, 2004. 41(5): p. 864-80.
100. Yuan, Y.M., et al., Leukotriene D4 stimulates the migration but not proliferation of endothelial cells mediated by the cysteinyl leukotriene cyslt(1) receptor via the extracellular signal-regulated kinase pathway. J Pharmacol Sci, 2009. 109(2): p. 285-92.
101. Dredge, K., et al., Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer, 2002. 87(10): p. 1166-72.
102. Yang, X., et al., Antiangiogenesis response of endothelial cells to the antitumour drug 10-methoxy-9-nitrocamptothecin. Pharmacol Res, 2006. 54(5): p. 334-40.
103. Dhanabal, M., et al., Endostatin induces endothelial cell apoptosis. J Biol Chem, 1999. 274(17): p. 11721-6.
104. Staton, C.A., M.W. Reed, and N.J. Brown, A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol, 2009. 90(3): p. 195-221.
105. Raghunath, M., et al., Pharmacologically induced angiogenesis in transgenic zebrafish. Biochem Biophys Res Commun, 2009. 378(4): p. 766-71.
106. He, Z.H., et al., Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol, 2010. 132(2): p. 443-9.
107. Gore, A.V., et al., Vascular development in the zebrafish. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006684.
108. Isogai, S., M. Horiguchi, and B.M. Weinstein, The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol, 2001. 230(2): p. 278-301.
109. Folkman, J. and C. Haudenschild, Angiogenesis in vitro. Nature, 1980. 288(5791): p. 551-6.
110. Amano, K., et al., Enhancement of ischemia-induced angiogenesis by eNOS overexpression. Hypertension, 2003. 41(1): p. 156-62.
111. Reya, T., et al., Stem cells, cancer, and cancer stem cells. Nature, 2001. 414(6859): p. 105-11.

中華民國100年死因統計(民國101年12月)【電子書】。台北市:行政院衛生署。民國102年5月取自:http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx?now_fod_list_no=12743&class_no=440&level_no=4
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.96.61
論文開放下載的時間是 校外不公開

Your IP address is 18.226.96.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code