Responsive image
博碩士論文 etd-0810113-215542 詳細資訊
Title page for etd-0810113-215542
論文名稱
Title
以樹酯切片技術探討澳洲球形海綿內共生菌的多樣性
Study of the Diversity of Endosymbiotic Bacteria in the Demospongiae Sponge Cinachyrella australiensis by Resin Sectioning Technique
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-25
繳交日期
Date of Submission
2013-09-10
關鍵字
Keywords
共生細菌、澳洲球形海綿、免疫金定位、螢光原位雜合
fluorescence in situ hybridization, immuno-gold labeling, endosymbiotic bacteria, Cinachyrella australiensis
統計
Statistics
本論文已被瀏覽 5716 次,被下載 707
The thesis/dissertation has been browsed 5716 times, has been downloaded 707 times.
中文摘要
海洋無脊椎動物體內普遍存在與細菌共生之現象,例如水母、珊瑚以及海綿。
海綿為一最簡單的多細胞生物,許多研究指出其體內通常都含有豐富且多樣的共
生細菌與之共生。文獻中指出澳洲球形海綿體內有 85%的細菌其 16S rRNA基因序
列的分析與生長在深海熱泉的底棲生物 Solemya reidi (雙殼類原鰓亞綱)體內之化
學自營性硫氧化共生細菌有高達 88.65%的相似度。本研究利用樹酯切片技術透過
光學顯微鏡、穿透式電子顯微鏡的影像初步觀察澳洲球形海綿組織細胞內部及表
面之微細結構,細胞內、外及中膠層中的確存在許多不同型態的共生細菌。進一
步利用文獻中針對優勢及次要化學自營性共生菌的 16S rRNA 和 RuBisCO 基因所
設計的不同專一性探針,以及針對澳洲球形海綿粒線體中的 COXI 基因所設計的
專一性探針進行以及螢光原位雜交技術,透過螢光顯微鏡觀察優勢化學自營性共
生菌以及粒線體的位置分布,再進一步利用免疫金定位法證實此化學自營性硫氧
化共生菌存在海綿組織中的變形原始細胞中,屬於穩定的細胞內共生。
Abstract
Symbioses between chemoautotrophic bacteria and invertebrates are widespread in marine environments. Many jellyfishes, corals, and sponges often contain bacterial symbionts. Sponges are by far the simplest multicellular animals, which have been shown to harbor dense and diverse microbial communities within the intercellular matrix. The previous studies indicated that the 16S rRNA sequence of one dominant bacteria (85%) associated with sponge, Cinachyrella australiensis, has remarkable similarity (86.65%) with the symbiotic chemoautotrophic sulfur-oxidizing bacteria of the deep-sea hydrothermal vent mussel, Solemya reidi. The aim of this study is to investigate the ultrastructure and localization of the symbiotic bacteria in the C. australiensis by utilizing fluorescence in situ hybridization and immuno-gold labeling. Various morphological symbiotic bacteria in the C. australiensis were observed by electronicmicroscopical method (TEM). The specific probes designed based on 16S rRNA and RuBisCO gene were chosen to identify the localization of this chemoautotrophic sulfur-oxidizing bacteria within the mesoglial cell. The fluorescent and TEM image data demonstrated that the location of the chemoautotrophic sulfur-oxidizing bacteria is within amoeboid archaeocytes in the mesohyl, suggest that the presence of this symbiotic bacteria is stable .
目次 Table of Contents
謝辭 ................................................................................................................................... i
摘要 .................................................................................................................................. ii
Abstract .......................................................................................................................... iii
目次 ................................................................................................................................. iv
圖次 ................................................................................................................................. vi
表次 ................................................................................................................................ vii

壹、 緒論 ...................................................................................................................... 1
1 海綿簡介 .............................................................................................................. 1
2 海綿與微生物的共生關係 .................................................................................. 2
3 共生細菌的分布 .................................................................................................. 4
4 共生細菌的傳遞 .................................................................................................. 5
5 共生形式與構造-Bacteriocyte ............................................................................. 6
6 澳洲球形海綿共生菌的分布 .............................................................................. 9
貳、 材料與方法 ........................................................................................................ 12
1. 樣品來源及採集 ................................................................................................ 12
2 海綿組織液高壓冷凍法 .................................................................................... 12
3. DNA探針 (DNA probe) ................................................................................... 13
4 螢光原位雜合法 (fluorescence in situ hybridization (FISH)) .......................... 15
5 穿透式電子顯微鏡 (transmission electron microscopy) .................................. 16
6 免疫金標定法 (immuno-gold labeling) ............................................................ 17 v

參、 結果 .................................................................................................................... 19
1 澳洲球形海綿的形態及分布 ............................................................................ 19
2 澳洲球形海綿細胞型態學觀察 (光學顯微鏡) ............................................... 19
3 螢光原位雜合 (fluorescence in situ hybridization (FISH)) .............................. 20
4 穿透式電子顯微鏡 (transmission electron microscopy (TEM)) ...................... 22
5 免疫金定位 (immuno-gold labeling) ................................................................ 24
肆、 討論 .................................................................................................................... 25
伍、 參考文獻 ............................................................................................................ 30
陸、 附錄 .................................................................................................................... 74
參考文獻 References
Aboul-Ela HM. (2012) Marine sponges: a potent source of anticancer metabolites. F1000Posters 3.

Akman L, Yamashita A,Watanabe H, Oshima K, Shiba T, Hattori M and Aksoy S. (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32: 402–407.

Amann RI, Krumholz L and Stahl DA. (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bact 172: 762–70.

Badger MR and Bek EJ. (2008) Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. J Exp Bot 59: 1525–1541.

Baumann P, Moran NA and Baumann L. (2000) Bacteriocyte-associated endosymbionts of insects. The Prokaryotes, Springer New York., pp. 1-67.

Baumann P, Moran NA and Baumann, L. (2006). Bacteriocyte-associated endosymbionts of insects. The Prokaryotes, Springer New York., pp. 403–438.

Bergquist PR. (1978) Sponges. (University of California Press).

Bewley CA, Holland ND and Faulkner DJ. (1996b) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722.

Bigliardi E, Sciscioli M and Lepore E. (1993) Interactions between prokaryotic and eukaryotic cells in sponge endocytobiosis. Endocyt Cell Res 9: 215–221.

Boone DR, Castenholz RW, Garrity GM, Brenner DJ, Krieg NR and Staley JT. (2005) Bergey’s Manual of Systematic Bacteriology. Springer.

Böhm M, Hentschel U, Friedrich A, Fieseler L, Steffen R. Gamulin V, Müller I and Müller W. (2001) Molecular response of the sponge Suberites domuncula to bacterial infection. Mar Biol 139: 1037–1045.

Boury-Esnault N and Bézac C. (2007) Morphological and cytological descriptions of a new Polymastia species (Hadromerida, Demospongiae) from the North-West Mediterranean Sea. Porifera research: biodiversity, innovation and sustainability. Museu Nacional, Rio de Janeiro, Brasil., pp.23–33.

Braendle C, Miura T, Bickel R, Shingleton AW, Kambhampati S and Stern DL. (2003) Developmental origin and evolution of bacteriocytes in the Aphid–Buchnera symbiosis. PLoS Biol 1: 70–76.

Bright M and Bulgheresi S. (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8: 218–230.

Bright M and Sorgo A. (2003) Ultrastructural reinvestigation of the trophosome in adults of Riftia pachyptila (Annelida, Siboglinidae). Invert Biol 122: 347–368.

Buchner P. (1965) Endosymbiosis of animals with plant microorganisms. John Wiley New York.

Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, . . . and Venter JC. (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058–1073.

Cian MCD, Andersen A, Toullec JY, Biegala I, Caprais JC, Shillito B and Lallier F. (2003) Isolated bacteriocyte cell suspensions from the hydrothermal-vent tubeworm Riftia pachyptila, a potent tool for cellular physiology in a chemoautotrophic symbiosis. Mar Biol 142: 141–151.

Chang CWJ, Patra A, Roll DM, Scheuer PJ, Masumoto GK and Clardy J. (1984) Kalihinol-A, a highly functionalized diidocyano diterpenoid antibiotic from a sponge. J AmChem Soc 106: 4644–4646.

Chase MW. (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastidgene rbcL. Ann Missouri Bot Gard 80: 528–580.

Clinton JD. (1979) Biological techniques for transmission and scanning electron microscopy (2nd ed). Burlington, Vt: Ladd Research Industries.

Conte MR, Fattorusso E, Lanzotti V, Magno S and Mayol L. (1994) Lintenolides, new pentacyclic bioactive sesterterpenes from the caribbean sponge Cacospongia cf. linteiformis. Tetrahedron 50: 849–856.

Dusan C and Karel K. (2007) Electron microscopy in situ hybridization: tracking of DNA and RNA sequences at high resolution. Methods Mol Biol 369: 213–228.

Elsaied H and Naganuma T. (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67: 1751–1765.

Freeman CJ and Thacker RW. (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 56: 1577–1586.

Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P and Hentschel U. (1999) Microbial diversity in the marine sponge Aplyina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134: 461–470.

Fritsche TR, Horn M, Seyedirashti S, Gautom RK, Schleifer KH and Wagner M. (1999) In situ detection of novel bacterial endosymbionts of Acanthamoeba spp. phylogenetically related to members of the order Rickettsiales. Appl Environ Microbiol 65: 206–212.

Gage DJ. (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68: 280–300.

Gaino E, Burlando B and Buffa P. (1987) Ultrastructural study of the mature egg of Tethya citrina sarà and melone (porifera, demospongiae). Gamete Res 16: 259–265.

Gaino E, Sciscioli M, Lepore E, Rebora M and Corriero G. (2006) Association of the sponge Tethya orphei (porifera, demospongiae) with filamentous cyanobacteria. Inverter Biol 125: 281–287.

Gallissian MF and Vacelet J. (1987) Ultrastructure de quelques e ´tudes de l’ovogene `se de spongiaires de genre Verongia (dictyoceratida). Ann Sci Nat 18: 381–404.

Gros O, Darrasse A, Durand P, Frenkiel L and Mouëza M. (1996). Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62: 2324–2330.

Gündüz EA and Douglas AE. (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Biol Sci 276: 987–991.

Hand SC. (1987) Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-sulfur bacteria symbioses. Biol Bull 173: 260–276.

Hanson TE and Tabita FR. (2001) A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci USA 98: 4397–4402.

Hausmann R, Vitello MP, Leitermann F and Syldatk C. (2006) Advances in the production of sponge biomass Aplysina aerophoba—A model sponge for ex situ sponge biomass production. J Biotechnol 124: 117–127.

Heddi A, Vallier A, Anselme C, Xin H, Rahbe Y and Wäckers F. (2004) Molecular and cellular profiles of insect bacteriocytes: mutualism and harm at the initial evolutionary step of symbiogenesis. Cell Microbiol 7: 293–305.

Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J and Horn M. (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37: 59–88.

Hickman C, Roberts L, Keen S, Larson A and Eisenhour D. (2007) Animal Diversity (4th ed). New York: McGraw-Hill Science.

Hooper JNA. and van Soest RWM. (2002) Phylum Porifera. Class Demospongiae Sollas. (1885) Kluwer Academic/ Plenum Publishers, New York.

Imhoff JF and Stöhr R. (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. Sponges (Porifera) 37: 35–57

Isbikawa H and Yamaji M. (1985) Symbionin, an aphid endosymbiont-specific protein; Production of insects deficient in Symbionin. Insect Biochem 15: 155–163.

Klenk HP, Clayton RA, Tomb JF, White O, Nelson KE, Ketchum KA, Dodson RJ, Gwinn M, Hickey EK, Peterson JD, . . . and Venter JC. (1997) The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364–370.

König GM and Wright AD. (1996) Marine natural products research: current directions and future potential. Planta Med 62: 193–211.

Koziol C, Borojevic R, Steffen R and Müller WEG. (1998) Sponges (Porifera) model systems to study the shift from immortal to senescent somatic cells: the telomerase activity in somatic cells. Mech Ageing Dev 100: 107–20.

Kunst FN, Ogasawara I, Moszer AM, Albertini G, Alloni V, Azevedo MG, . . . and Danchin A. (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249–256.

Le Guellec D. (1998) Ultrastructural in situ hybridization: a review of technical aspects. Biol Cell 90: 297–306.

Lee YK, Lee JH and Lee HK. (2001) Microbial Symbiosis in Marine Sponges. J Microbiol 39: 254–264.

Lee OO, Chui PY, Wong YH, Pawlik JR and Qian PY. (2009) Evidence for vertical transmission of bacterial symbionts from adult to embryo in the Caribbean sponge Svenzea Zeai. Appl Environ Microbiol 75: 6147–6156.

Levi C and Levi P. (1976) Embryogenese de Chondrosia reniformis (Nardo), demo- sponge ovipare, et transmission des bacteries symbiotiques. Ann Sci Nat Zool 18: 367–380.

Lévi C and Porte P. (1962) Etude du microscope électronique de léponge Oscarella lobularis Schmitt et de sa larve amphiblastula. Cah Biol Mar 3: 307–315.

Leys SP and Hill A. (2012) The physiology and molecular biology of sponge tissues. Advances in Marine Biology. Academic Press pp. 1–56.

Li LY, Deng ZW, Li J, Fu HZ and Lin WH. (2004) Chemical constituents from Chinese marine sponge Cinachyrella australiensis. Beijing Da Xue Xue Bao 36: 12–17.

Li ZY, He LM, Wu J and Jiang Q. (2006) Bacterial community diversity associated with four marine sponges from the South China Sea based on 16S rDNA-DGGE fingerprinting. J Exp Mar Biol Ecol 329: 75–85.

Macdonald SJ, Lin GG, Russell CW, Thomas GH and Douglas AE. (2012) The central role of the host cell in symbiotic nitrogen metabolism. Proc Biol Sci 279: 2965–2973.

Maldonado M. (2007) Intergenerational transmission of symbiotic bacteria in oviparous and viviparous demosponges, with emphasis on intracytoplasmically-compartmented bacterial types. J Mar Biol Assoc UK 87: 1701–1713.

Manz W, Amann R, Ludwig W, Wagner M and Schleifer KH. (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst appl Microbiol 15: 593–600

Manz W, Arp G, Kindel GS, Szewzyk U and Reitner J. (2000) Widefield deconvolution epifluorescence microscopy combined with fluorescence in situ hybridization reveals the spatial arrangement of bacteria in sponge tissue. J Microbiol Methods 40:125–134.

McKiness ZP. (2004) Evolution of endosymbioses in deep-sea bathymodioline mussels (Mollusca:Bivalvia). PhD Thesis, Harvard University.

Michael JD and Laura ER. (2003) Biological electron microscopy theory: techiques and troublesh. New York. Kluwer Academic/ Plenum Publishers.

Müller WEG, Zahn RK, Kurelec B, Lucu C, Muller I and Uhlenbruck G. (1981) Lectin, a possible basis for symbiosis between bacteria and sponges. J Bacteriol145: 548–558.

Nardon P and Charles H. (2004) Morphological aspects of symbiosis. Symbiosis, J. Seckbach, ed. Springer Netherlands pp. 13–44.

Nishijima M, Lindsay DJ, Hata J, Nakamura A, Kasai H, Ise Y, Fisher CR, Fujiwara Y, Kawato M and Maruyama T. (2010) Association of thioautotrophic bacteria with deep-sea sponges. Mar Biotechnol 12: 253–260.

Nussbaumer AD, Fisher CR and Bright M. (2006) Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441: 345–348.

Nyholm SV and McFall-Ngai MJ. (2004) The winnowing: establishing the squid–Vibrio symbiosis. Nature Rev Microbiol 2: 632–642.

Ohtaka C and Ishikawa H. (1991) Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis 11: 19–30.

Olivier G and Leslie CM. (2008) Easy flat embedding of oriented samples in hydrophilic resin (LR White) under controlled atmosphere: application allowing both nucleic acid hybridizations (CARD-FISH) and ultrastructural observations. Acta Histochem 110: 427–431.

Peng J, Jiao J, Li J, Wang W, Gu Q, Zhu T and Li D. (2012) Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg Med Chem Lett 22: 3188–3190.

Prosser WA and Douglas AE. (1991) The aposymbiotic aphid: An analysis of chlortetracycline-treated pea apbid Acyrtbosipbon pisum. J Insect Physiol 37: 713–719.

Reid RG. (1980) Aspects of the biology of a gutless species of Solemya (Bivalvia: protobranchia). Can J Zool 58: 386–393.

Reiswig H. (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14: 231–249.

Riesgo A, Maldonado M and Durfort M. (2008) Occurrence of somatic cells within the spermatic cysts of demosponges: a discussion of their role. Tissue and Cell 40: 387–396.

Santavy DL, Willenz P and Colwell RR. (1990) Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl Environ Microbiol 56: 1750–1762.

Sara M. (1971) Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (cyanophyceae) and Ircinia variabilis (demospongiae). Mar Biol 11: 214–221.

Schmidt TM, DeLong EF and Pace NR. (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173: 4371–4378.

Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ and Haygood MG. (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel delta-proteobacterium, ‘Candidatus Entotheonella palauensis’. Mar Biol 136: 969–977.

Schwarzacher T and Heslop-Harrison J. (2000) Practical in situ hybridization 1st ed. BIOS Scientific Publishers.

Selesi D, Schmid M and Hartmann A. (2005) Diversity of green-like and red-like ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbl) in differently managed agricultural soils. Appl Environ Microbiol 71: 75–184.

Simpson TL. (1984) The cell biology of sponges. Springer Berlin Heidelberg, New York.

Spreitzer, R.J. (1993). Genetic dissection of rubisco structure and function. Annu Rev Plant Physiol Plant Mol Biol 44: 411–434.

Spurr AR. (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43.

Stewart FJ and Cavanaugh CM. (2006) Symbiosis of thioautotrophic bacteria with Riftia pachyptila. Molecular Basis of Symbiosis. Springer Berlin Heidelberg pp. 197–225.

Sun L, Song Y, Qu Y, Yu X and Zhang W. (2007) Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon Perleve (demospongiae). Cell and Tissue Res 328: 223–237.

Taylor MW, Radax R, Steger D and Wagner M. (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71: 295–347.

Tschinkel, Hayward, Mahoney and Felgenhauer. (2000) An introduction to animal diversity (5th ed). Boston: Pearson Custome Publishing.

Uchino Y and Yokota A. (2003) “Green-like” and “red-like” RubisCO cbbL
genes in Rhodobacter azotoformans. Mol Biol Evol 20: 821–830.

Usher KM and Ereskovsky AV. (2005) Larval development, ultrastructure and metamorphosis in Chondrilla australiensis Carter, 1873 (Demospongiae, Chondrosida, Chondrillidae). Int J Inver Rep Dev 47: 51–62.

Usher KM, Sutton DC, Toze S, Kuo J and Fromont J. (2005) Inter-generational transmission of microbical symbionts in the marine sponge Chondrilla australiensis (Demospongiae). Mar Freshw Res 56: 125–131.

Vacelet J. (1975) Etude en microscopie electronique de l'association entre bacteries et spongiaires du genre Verongia (Dictyoceratida). J Microsc BioI Cell 23: 271–288.

Vacelet J and Donadey C. (1977) Electron-microscope study of association between some sponges and bacteria. J Exp Mar Biol Ecol 30: 301–314.

Vogel, S. (1977) Current-induced flow through living sponges in nature. Proc Nat Acad Sci USA 74: 2069–2071.

Wang Y, Carolan JC, Hao F, Nicholson JK, Wilkinson TL and Douglas AE. (2010) Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. J Proteome Res 9: 1257–1267.

Watson GM and Tabita FR. (1997) Microbial ribulose-1,5-bisphosphate
carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigations. Fems Microbiol Lett 146: 13–22.

Webster NS and Taylor MW. (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14: 335–346.

Webster NS, Negri AP, Munro MMHG and Battershill CN. (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6: 288–300.

Webster NS and Hill RT. (2001) The culturable microbial community of the great barrier reef sponge Rhopaloeides odorabile is dominated by an alpha-proteobacterium. Mar Biol 138: 843–851.

Weisz J, Hentschel U, Lindquist N, and Martens C. (2007) Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Mar Biol 152: 475–483.

Wernegreen JJ. (2002) Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3: 850–861.

Wilkinson CR. (1978) Microbial associations in sponges. III. ultra-structure of the in situ associations in coral reef sponges. Mar Biol 49: 177–185.

Wilkinson CR. (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. Pp. 373-380 in Biologie des Spongiaires. C. Levi and N. Boury-Esnault, eds. Coll. Int. C.N.R.S. 291. essence.

Wilkinson CR. (1979) Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi, C., Boury- Esnault, N. (eds.) Biologie des spongiaires. CNRS. Paris, pp. 527–529.

Willenz P and Hartman WD. (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellidae: Porifera). Mar Biol 103: 387–402.

Wörheide G, Solé-Cava AM and Hooper JNA. (2005) Biodiversity, molecular ecology and phylogeography of marine sponges: patterns, implications and outlooks. Integr Comp Biol 45: 377–385.

Wörheide G. (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific. Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies 38: 1–88.

Zheng LH, Wang YJ, Sheng J, Wang F, Zheng Y, Lin XK and Sun M. (2011) Antitumor peptides from marine organisms. Mar Drugs 9: 1840–1859.

Zientz E, Dandekar T and Gross R. (2004) Metabolic interdepence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68: 745–770.

Zientz E, Feldhaar H, Stoll and Gross R. (2005) Insights into the microbial world associated with ants. Arch Microbiol 184: 199–206.

方力行。1989。珊瑚學~兼論台灣的珊瑚資源。黎明文化事業有限公司。

任淑仙。1995。無脊椎動物學。淑馨出版社。

陳勇輝。1988。澳洲球形海綿 (Cinachyra australiensis (Carter)1886) 芽體與成體型態之研究。國立中山大學海洋生物研究 碩士論文

王憶鎧。1996。澳洲球形海綿共生菌之研究。國立中山大學海洋資源研究所。碩士論文。

鍾逸甫。2002。黑色軟海綿 (Halicchondria okadai)的生殖及生態研究。國立中山大學海洋生物研究所。碩士論文。

盧德康。2003。澳洲球形海綿自營性硫氧化共生菌之螢光原位雜化。國立中山大學海洋資源研究所。碩士論文。

楊雅文。2007。澳洲球形海綿芽體共生菌之分佈與傳遞。國立中山大學海洋資源研究所。碩士論文。

彭紹恩,胡景雯,陳啓祥。2010。圖解穿透式電子顯微鏡術:生物樣本製備及顯微鏡操作實錄。國立海洋生物博物館。

吳京璉。2010。澳洲球形海綿內共生細菌多樣性研究。國立中山大學海洋資源研究所。碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code