Responsive image
博碩士論文 etd-0810114-134143 詳細資訊
Title page for etd-0810114-134143
論文名稱
Title
存在同頻道間干擾之兩次跳躍選擇中繼點方法在非對稱通道中的效能分析
Performance Analysis of Dual-hop Selective Relaying Scheme with Co-Channel Interferences in Asymmetric Channels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-25
繳交日期
Date of Submission
2014-09-10
關鍵字
Keywords
中繼端選擇、中斷機率、放大後前送型、合作式通訊網路、來源端波束、同頻干擾、正交空時碼塊編碼
relay selection, transmit beamforming(T-BF), orthogonal space-time block code(OSTBC), outage probability, amplify-and-forward(AF), cooperative communication network, co-channel interference(CCI)
統計
Statistics
本論文已被瀏覽 5648 次,被下載 0
The thesis/dissertation has been browsed 5648 times, has been downloaded 0 times.
中文摘要
在這篇論文中,我們探討了在兩次躍進(Dual Hop)配置多個放大後前送型(Amplify-and-Forward, AF)中繼端(Relay, R)的系統架構下。為了維持系統全分集(Full Diversity)的特性,在來源端(Source, S)配置了多根天線並使用正交空時碼塊編碼(Orthogonal Space-Time Block Code, OSTBC)技術;各個中繼端和目的端(Destination, D)只配置了1根天線,並假設中繼端和目的端受到來自環境的獨立但不同分布的同頻干擾(Co-Channel Interference, CCI)影響。為了抵抗干擾對系統的影響,在中繼端使用中繼端最佳選擇(Best Relay Selection, B-RS)和中繼端部份選擇(Partial Relay Selection, P-RS)這兩種常見的選擇技術,選擇出一個最適合的中繼端來協助系統改善效能。在同頻干擾影響的環境下,我們分析並推導出系統的中斷(Outage)機率的理論數據。觀察模擬的結果,我們發現理論數據和模擬數據是貼合的,此外,若是增加來源端天線數或中繼端個數對系統效能能夠有所改善。然而,一旦目的端受到同頻干擾的功率遠大於在中繼端的條件下,對於某些情況,增加來源端天線或中繼端反而對系統效能改善是沒有任何幫助的。為了進一步分析系統,除了可使用OSTBC技術來維持系統全分集特性,若是為了使得接收信號功率對雜訊功率比值(Signal-to-Noise Power Ratio, SNR)達到最大化,在來源端,我們改採用來源端波束(Transmit Beamforming, T-BF)技術,從模擬的結果觀察到,T-BF的中斷機率在天線數大於1的情況下永遠低於OSTBC技術。然而,為了達到這樣的系統效能,需要額外付出頻繁的回授(Feedback)代價來保證能夠得到完整的通道資訊(Channel State Information, CSI)。
Abstract
In this paper, we consider a two-hop multiple variable AF relaying scheme. The source node is equipped with multiple antennas and precoded by orthogonal space-time block code(OSTBC) technique to keep full diversity. Each relay and the destination nodes are equipped with single antenna and suffer from co-channel interferences(CCIs) in asymmetric channel respectively. Two main criterions, best relay selection(B-RS) and partial relay selection(P-RS), are applied to choose one proper relay among all participated relay nodes. Finally, the closed forms of outage probability of received signal are derived under this CCIs degradation environment. From the simulation results, we can show that the theoretical derivations are derived to match the simulation experiments. Besides, adding more source antenna or relay is helpful to system performance. Provided that the CCIs power at destination is much larger than at relay, for some specific cases, adding more source antenna or relay is without any help to system performance. Furthermore, instead of OSTBC, transmit beamforming (T-BF) technique is also considered at source to maximize signal-to-noise ratio(SNR) of received signal at each relay. We investigate the truth that the outage performance of T-BF always outperform OSTBC just as the number of source antenna more than one, while such assumption needs large feedback overhead to guarantee perfect channel state information(CSI).
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
第一章 導論 1
1.1 研究背景 2
1.2 研究動機 4
1.3 論文架構 4
第二章 系統介紹 6
2.1 合作式通訊網路 6
2.2 傳輸媒體存取控制 7
2.3 中繼端選擇機制 10
2.3 同頻通道干擾 12
2.4 空時碼塊編碼技術 12
2.5 波束技術 13
第三章 無線通道模型 15
3.1 瑞利衰退通道模型 15
3.2 萊森衰退通道模型 16
3.3 雙散射衰落通道模型 16
3.4 非對稱衰落通道的通道機率模型 18
第四章 非對稱衰落通道下OSTBC信號和同頻干擾的效能分析 19
4.1 SINR推導與分析 19
4.2 中斷機率效能分析 22
4.2-1 基於中繼端最佳選擇方式的效能分析 23
4.2-2 基於中繼端部分選擇方式的效能分析 26
第五章 非對稱衰退通道下T-BF信號和同頻干擾的效能分析 32
5.1 SINR推導與分析 32
5.2 中斷機率效能分析 34
第六章 模擬分析與討論 36
第七章 結論 43
參考文獻 44
中英對照表 51
縮寫對照表 56
參考文獻 References
[1] M. J. Lee, J. Zheng, Y. Ko, and D. M. Shrestha, “Emerging standards for wireless mesh technology,” IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 56-63, Apr. 2006.
[2] Harmonized Contribution on 802.16j (Mobile Multihop Relay) Usage Models. [Online]. Available: http://wirelessman.org/relay/docs/ 80216j-06_015.pdf.
[3] R. B. Marks, J. M. Costa, and B. G. Kiernan, “The evolution of wirelessMAN,” IEEE Microwave Mag., vol. 9, no. 4, pp. 72-79, Aug. 2008.
[4] Y. Yang, “Relay technologies for WiMAX and LTE advanced mobile systems,” IEEE Commun. Mag., vol. 47, no. 10, pp. 100-105, Oct. 2009.
[5] C. Zhong, H. A. Suraweera, A. Huang, Z. Zhang, and C. Yuen, “Outage probability of dual-Hop multiple antenna AF relaying systems with interference,” IEEE Trans. Commun., vol. 61, no. 1, pp. 108-119, Jan. 2013.
[6] D. S. Michalopoulos, J. Ng, and R. Schober, “Optimal relay selection for outdated CSI,” IEEE Commun. Lett., vol. 17, no. 3, pp. 503-506, Mar. 2013.
[7] Y. Gu, S. S. Ikki, and S. A¨ıssa, “Opportunistic cooperative communication in the presence of co-channel interferences and outdated channel information,” IEEE Commun. Lett., vol. 17, no. 10, pp. 1948-1951, Mar. 2013.
[8] A. Bletsas, H. Shin, and M. Z. Win, “Outage optimality of opportunistic amplify-and-forward relaying,” IEEE Commun. Lett., vol. 11, no. 3, pp. 261-263, Mar. 2007.
[9] D. Molteni, M. Nicoli, and U. Spagnolini, “Performance of MIMO-OFDMA systems in correlated fading channels and non-stationary interference,” IEEE Trans. Wireless Commun., vol. 10, no. 5, pp. 1480-1494, May 2011.
[10] T. D. Dimousios, S. A. Mitilineos, S. C. Panagiotou, and C. N. Capsalis, “Design of a corner-reflector reactively controlled antenna for maximum directivity and multiple beam forming at 2.4 GHz,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1132-1139, Apr. 2011.
[11] 簡榮宏、廖冠雄(2006)。802.11 無線區域網路。臺北市:全華科技圖書有限公司。
[12] F. Yang, M. Huang, M. Zhao, S. Zhang, and W. Zhou, “Cooperative strategies for wireless relay networks with cochannel interference over time-correlated fading channels,” IEEE Trans. Veh. Technol., vol. 62, no. 7, pp. 3392-3408, Sep. 2013.
[13] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative diversity method based on network path selection,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 659-672, Mar. 2006.
[14] I. Krikidis, J. S. Thompson, and S. McLaughlin, “Max-min relay selection for legacy amplify-and-forward systems with interference,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3016-3027, Jun. 2009.
[15] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[16] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
[17] O. Tirkkonen and A. Hottinen, “Square-matrix embeddable space–time block codes for complex signal constellations,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 384-395, Feb. 2002.
[18] Q. Li, Q. Zhang, R. Feng, L. Luo, and J. Qin, “Optimal relay selection and beamforming in MIMO cognitive multi-relay networks,” IEEE Commun. Lett., vol. 17, no. 6, pp. 1188-1191, Jun. 2013.
[19] K.-C. Lee, J.-W. Pu, C.-P. Li, and H.-J. Li, “Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and interference at the relay,” in Proc. IEEE GLOBECOM'12, Anaheim, California, Dec. 2012, pp. 4887-4892.
[20] D. Chizhik, J. Ling, P. W. Wolniansky, R. A. Valenzuela, N. Costa, and K. Huber, “Multiple-input multiple-output measurements and modeling in Manhattan,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 321-331, Apr. 2003.
[21] H. Shin and M. Z. Win, “MIMO diversity in the presence of double-scattering,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp. 2976-2996, Jul. 2008.
[22] A. Bletsas, H. Shin, and M. Z. Win, “Cooperative communications with outage-optimal opportunistic relaying,” IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3450-3460, Sep. 2007.
[23] K.-C. Lee, C.-P. Li, T.-Y. Wang, and H.-J. Li, “Performance analysis of dual-hop amplify-and-forward systems with multiple antennas and co-channel interference,” IEEE Trans. Wireless Commun., vol. 13, no. 6, pp. 3070-3087, Jun. 2014.
[24] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, “Probability and statistics for engineers and scientists,” eighth edition, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2007, chapter 5.
[25] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, sixth edition, Academic Press, San Diego, 2000.
[26] W.-C. Huang, Y.-S. Yang, C.-P. Li, and H.-J. Li, “A new pilot architecture for sub-band uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 59, no. 3, pp. 461-470, Jun. 2013.
[27] W.-C. Huang, C.-P. Li, and H.-J. Li, “Optimal pilot sequence design for channel estimation in CDD-OFDM systems,” IEEE Trans. Wireless Commun., vol. 11, no. 11, pp. 4006-4016, Nov. 2012.
[28] W.-W. Hu, C.-P. Li, and J.-C. Chen, “Peak power reduction for pilot-aided OFDM systems with semi-blind detection,” IEEE Commun. Lett., vol. 16, no. 7, pp. 1056-1059, Jul. 2012.
[29] C.-P. Li, S.-H. Wang, and K.-C. Chan, “Low complexity transmitter architectures for SFBC MIMO-OFDM systems,” IEEE Trans. Commun., vol. 60, vol. 6, pp. 1712-1718, Jun. 2012.
[30] J.-C. Chen, M.-H. Chiu, Y.-S. Yang, and C.-P. Li, “A suboptimal tone reservation algorithm based on cross-entropy method for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast., vol. 57, no. 3, pp. 752-756, Sep. 2011.
[31] S.-H. Wang, J.-C. Xie, C.-P. Li, and Y.-F. Chen, “A low-complexity PAPR reduction scheme for OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1242-1251, Apr. 2011.
[32] J.-C. Chen and C.-P. Li, “Tone reservation using near-optimal peak reduction tone set selection algorithm for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 17, no. 11, pp. 933-936, Nov. 2010.
[33] C.-P. Li, S.-H. Wang, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916-2921, May 2010.
[34] W.-C. Huang, C.-P. Li, and H.-J. Li, “An investigation into the noise variance and the SNR estimators in imperfectly-synchronized OFDM systems,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 1159-1167, Mar. 2010.
[35] W.-C. Huang, C.-H. Pan, C.-P. Li, and H.-J. Li, “Subspace-based semi-blind channel estimation in uplink OFDMA systems,” IEEE Trans. Broadcast., vol. 56, no. 1, pp. 58-65, Mar. 2010.
[36] S.-H. Wang and C.-P. Li, “A low-complexity PAPR reduction scheme for SFBC MIMO-OFDM systems,” IEEE Signal Process. Lett., vol. 16, no. 11, pp. 941-944, Nov. 2009.
[37] W.-C. Huang, C.-P. Li, and H.-J. Li, “On the power allocation and system capacity of OFDM systems using superimposed training schemes,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1731-1740, May 2009.
[38] W.-C. Huang, C.-P. Li, and H.-J. Li, “A computationally efficient DFT scheme for applications with a subset of non-zero inputs,” IEEE Signal Process. Lett., vol. 15, pp. 206-208, 2008.
[39] C.-P. Li and W.-W. Hu, “Super-imposed training scheme for timing and frequency synchronization in OFDM systems,” IEEE Trans. Broadcast., vol. 53, issue 2, pp. 574-583, Jun. 2007.
[40] W.-W. Hu, S.-H. Wang, and C.-P. Li, “Gaussian integer sequences with ideal periodic autocorrelation functions,” IEEE Trans. Signal Process., vol. 60, no. 11, pp. 6074-6079, Nov. 2012
[41] C.-P. Li and W.-C. Huang, “A constructive representation for the fourier dual of the Zadoff-Chu sequences,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp. 4221-4224, Nov. 2007.
[42] Y. Zhao, R. Adve, and T. J. Lim, “Beamforming with limited feedback in amplify-and-forward cooperative networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5145-5149, Dec. 2008.
[43] P. L. Yeoh, M. Elkashlan, and I. B. Collings, “Selection relaying with transmit beamforming: a comparison of fixed and bariable gain relaying,” IEEE Trans. Commun., vol. 59, no. 6, pp. 1720-1730, Jun. 2011.
[44] L. Yang and M.-S. Alouini, “Outage probability of distributed beamforming with co-channel interference,” IEEE Commun. Lett., vol. 16, no. 3, pp. 334-337, Mar. 2012.
[45] R. Tannious and A. Nosratinia, “Spectrally-efficient relay selection with limited feedback,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp. 1419-1428, Oct. 2008.
[46] M. Seyfi, S. Muhaidat, and J. Liang, “Amplify-and-forward selection cooperation over Rayleigh fading channels with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 11, no. 1, pp. 199-209, Jan. 2012.
[47] N. Yi, Y. Ma, and R. Tafazolli, “Joint rate adaptation and best-relay selection using limited feedback,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2797-2805, Jun. 2013.
[48] D. S. Michalopoulos, N. D. Chatzidiamantis, R. Schober, and G. K. Karagiannidis, “The diversity potential of relay selection with practical channel estimation,” IEEE Trans. Wireless Commun., vol. 12, no. 2, pp. 481-493, Feb. 2013.
[49] A. Rao, H. Ma, M.-S. Alouini, and Y. Chen, “Impact of primary user traffic on adaptive transmission for cognitive radio with partial relay selection,” IEEE Trans. Wireless Commun., vol. 12, no. 3, pp. 1162-1172, Mar. 2013.
[50] M. Ju, K.-S. Hwang, and H.-K. Song, “Relay selection of cooperative diversity networks with interference-limited destination,” IEEE Trans. Veh. Technol., vol. 62, no. 9, pp. 4658-4665, Nov. 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.101.95
論文開放下載的時間是 校外不公開

Your IP address is 3.138.101.95
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code