Responsive image
博碩士論文 etd-0810117-165249 詳細資訊
Title page for etd-0810117-165249
論文名稱
Title
利用高精度氧化石墨烯光柵於窄線寬矽光子波導濾波器的實現
Narrowband silicon photonic waveguide filter enabled by precisely-controlled graphene oxide gratings
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-22
繳交日期
Date of Submission
2017-09-10
關鍵字
Keywords
布拉格光柵、波導、光譜反射響應、全像術、矽光子學、氧化石墨烯
silicon photonics, optical spectrum, Holography, graphene oxide, Bragg grating, waveguide
統計
Statistics
本論文已被瀏覽 5703 次,被下載 18
The thesis/dissertation has been browsed 5703 times, has been downloaded 18 times.
中文摘要
本論文主要是探討利用標準互補式金屬氧化物半導體製程(CMOS)實現矽光學布拉格光柵波導於窄線寬波導結構設計,以及討論其基本模態與高階模態之光場分布與量測。利用實驗室提出的披覆層調變光柵波導設計改變其參數延伸應用,(1)藉由改變主波導與側波導距離作光場於狹縫模態模擬及量測討論,(2)利用淺蝕刻側波導結構作為窄線寬波導應用,(3)利用高精度氧化石墨烯光柵結合於矽波導結構上,在模擬與量測結果作討論,提供靈敏且高精確度的光譜響應,而與異質材料結合之矽光子元件可以用來當作光濾波器、分波多工或是感測元件。
而絕緣體晶片(Silicon on insulator)高折射率差SOI的晶片設計,由於在矽波導側壁的光柵製程技術需要高解析度,側壁粗糙會造成光於波導傳輸損耗以及旁瓣效應。本論文提出了一個新穎異質整合製程,利用全像術高解析度光柵結合於SOI波導,並藉由紫外光臭氧蝕刻機精準調變薄膜厚度,從30 nm可調變至最薄厚度4 nm,並用XPS得證其薄膜表面被氧化蝕刻。我們再利用PMMA協助轉移氧化石墨烯光柵至矽波導上,其可利用紫外光臭氧蝕刻機至低損耗(~ 5dB/cm)。氧化石墨烯折射率約為1.58,較低的折射率差利於作窄線寬反射器,其整合的光電元件可以應用於各種研究領域,如太陽能電池、液晶配向、微波矽光子、氣體濃度感測、生物感測器等應用。
Abstract
This thesis aims to achieve narrowband waveguide gratings on silicon-on-insulator (SOI) platform by using CMOS-compatible process. Silicon strip and cladding-modulated waveguide gratings are served as starting building blocks for further advancement. The main contributions in this thesis include: (1) the analysis of slot waveguide modes in cladding-modulated waveguide gratings; (2) the demonstration of narrowband cladding-modulated waveguide gratings with a shallow cladding waveguides; and (3) the demonstration of narrowband waveguide gratings by depositing a thin graphene oxide (GO) grating layer atop silicon strip waveguides.
Conventional silicon strip waveguide gratings are implemented by applying sidewall corrugations with a width of only tens of nanometers. It is therefore difficult to realize such a fine structure precisely by DUV lithography. Conversely, the definition of fine GO gratings are achieved by high-resolution laser interference lithography and oxygen plasma etching. The resulting GO gratings can be further thinned (from 30 nm to only 4 nm in thickness) and oxidized (fraction of the oxygenated carbon in GO is increased from 50.1% to 54.15%) by ozone treatment. This finding prompts us to demonstrate a low-loss (~ 5dB/cm) and narrowband (0.335 nm) GO grating as a distributed reflector atop silicon strip waveguide. Its reflecting wavelength is insensitive to the thickness variation of GO grating due to the low refractive index of GO (n~1.58).
目次 Table of Contents
中文論文審定書 i
英文論文審定書 ii
中文摘要 iii
英文摘要 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1研究背景 1
1-2研究動機 5
1-3論文架構 12
第二章 基礎理論 13
2-1布拉格光柵波導結構與原理 13
2-2數值方法 16
2-2-1薄膜模態匹配法(Film Mode Method) 16
2-2-2特徵模態展開法(EME) 18
2-3波導類型介紹 20
2-3-1條形波導(Strip waveguide)與布拉格光柵 21
2-3-2板形波導(Slab waveguide)布拉格光柵 23
2-3-3披覆層調變波導(Cladding modulated waveguide) 25
2-4石墨烯(Graphene)及氧化石墨烯(Graphene oxide)簡介 29
2-4-1石墨烯特性及製備方法 29
2-4-2氧化石墨烯特性及製備方法 31
第三章 微影製程介紹 40
3-1氧化石墨烯光柵微影技術流程 40
3-2全像術系統 42
3-3氧化石墨烯光柵轉移技術 45
第四章 布拉格光柵波導設計模擬與量測結果 51
4-1矽波導晶片量測系統 51
4-2光柵耦合器(Grating coupler) 53
4-3下線晶片布局 54
4-4狹縫模態(Slot mode)波導設計 57
4-5淺披覆層調變波導(shallow cladding modulated waveguide)設計 65
第五章 實現氧化石墨烯光柵轉移至矽波導之應用 69
5-1氧化石墨烯之X射線光電子能譜(XPS)分析 69
5-2利用UV-visible分析氧化石墨烯薄膜穿透度 70
5-3氧化石墨烯光柵模擬 72
5-4 氧化石墨烯光柵量測 76
5-4-1氧化石墨烯薄膜與光柵結構的損耗比較 76
5-4-2氧化石墨烯光柵波導量測結果 83
第六章 結論與未來工作 88
6-1結果與討論 88
6-2未來工作 89
參考文獻 92
附錄 99
參考文獻 References
[1] http://blog.chinaaet.com/caikeji/p/44326
[2] Askari Mohammad Bagher, Mirzaei Mahmoud Abadi Vahid, and Mirhabibi Mohsen, “Types of Solar Cells and Application,” American Journal of Optics and Photonics vol. 3, no. 5, pp. 94-113, 2015.
[3] http://www.ready-links.com/ftth.html
[4] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout, P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 401–412, 2005.
[5] http://iprajwal.blogspot.tw/2010/12/ibms-new-chip-using-silicon.html
[6] Lian-Wee Luo, Noam Ophir, Christine P. Chen, Lucas H. Gabrielli, Carl B. Poitras, Keren Bergmen, and Michal Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nature Communications, vol. 5, no. 3069, 2014.
[7] Laurent Vivien, and Lorenzo Pavesi, “Handbook of Silicon Photonics,” CRC Press, 2013.
[8] Richard Soref, “The Past, Present, and Future of Silicon Photonics,” Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, 2006.
[9] http://www.eettaiwan.com/news/article/20161130NT01-silicon-photonics-become-multibillion-dollar-market
[10] Xu. Wang, “Silicon Photonic Waveguide Bragg Gratings,” The University of British Columbia doctor thesis, 2013.
[11] Saeed Khan, and Sasan Fathpour, “Complementary apodized grating waveguides for tunable optical delay lines,” Optics Express, vol. 20, no. 18, pp. 19859-19867, 2012.
[12] D. T.H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Optics Letters, vol. 34, no. 9, pp. 1357-1359, 2009.
[13] Yung-Jr Hung, Keng-Hsien Lin, Chong-Jia Wu, Cheng-Yu Wang, and Yung-Jui Chen, “Narrowband Reflection from Weakly Coupled Cladding-Modulated Bragg Gratings,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 22, no. 6, 4402507, 2016.
[14] Xu. Wang, Wei Shi, Raha Vafaei, Nicolas A.F. Jaeger, and Lukas Chrostowski, “Uniform and Sampled Bragg Gratings in SOI Strip Waveguides with Sidewall Corrugations,” IEEE Photonics Technology Letters, vol. 23, no. 5, pp. 290-292, 2011.
[15] Xu Wang, Wei Shi, Han Yun, Samantha Grist, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Optics Express, vol. 20, no. 14, pp. 15547-15558, 2012.
[16] Yung-Jr Hung, Chong-Jia Wu, Tse-Hung Chen, Tzu-Hsiang Yen and Ya-Ching Liang, “Superior temperature sensing performance in cladding-modulated Si waveguide gratings,” Journal of Lightwave Technology, vol. 34, no. 18, pp. 4329-4335, 2016.
[17] http://www.cables-solutions.com/tag/dwdm-multiplexer
[18] Zhen zhou Cheng, Zhen Li, Ke Xu, and Hon Ki Tsang, “Increase of the grating coupler bandwidth with a graphene overlay,” Applied Physics Letters, vol. 104, no. 11, 111109, 2014.
[19] José Capmany, David Domenech, and Pascual Muñoz, “Silicon graphene Bragg gratings,” Optics Express, vol. 22, no. 5, pp. 5283-5290, 2014.
[20] Wei Xiong, Yun Shen Zhou, Wen Jia Hou, Li Jia Jiang, Yang Gao, Li Sha Fan, Lan Jiang, Jean Francois Silvain, and Yong Feng Lu, “Direct writing of graphene patterns on insulating substrates under ambient conditions,” Scientific Reports, vol. 4, pp. 4892, 2014.
[21] Junjun Ding, Ke Du, Ishan Wathuthanthri, Chang-Hwan Choi, Frank T. Fisher, and Eui-Hyeok Yang, “Transfer patterning of large-area graphene nanomesh via holographic lithography and plasma etching,” Journal of Vacuum Science & Technology B, vol. 32, no. 6, 06FF01, 2014.
[22] Maher F. El-Kady, and Richard B. Kaner, “Direct Laser Writing of Graphene Electronics,” ACS Nano, vol. 8, no. 9, pp. 8725–8729, 2014.
[23] Anton Lerf, Heyong He, Michael Forster, and Jacek Klinowski, “Structure of Graphite Oxide Revisited,” Journal Physical Chemistry B, vol. 102, no. 23, pp. 4477–4482 1998.
[24] Daniel R. Dreyera, and Christopher W. Bielawski, “Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry,” Chemical Science, vol. 2, no. 7, pp. 1233-1240, 2011.
[25] Jingzhi Shang, Lin Ma, Jiewei Li, Wei Ai, Ting Yu, and Gagik G. Gurzadyan, “The Origin of Fluorescence from Graphene Oxide,” Scientific Reports, vol. 2 no.792, 2012.
[26] Yan Gao, Chengbing Qin, Zhixing Qiao, Baotian Wang, Weidong Li,Guofeng Zhang, Ruiyun Chen, Liantuan Xiao, and Suotang Jia, “Imaging and spectrum of monolayer graphene oxide in external electric field,” Carbon, vol. 93, pp. 843-850, 2015.
[27] Sridevi. S, K. S. Vasu, Navakanta Bhat, S. Asokana, and A. K. Sood, “Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings,” Sensors and Actuators B: Chemical, vol. 223, pp. 481-486, 2016.
[28] Sridevi S., K. S. Vasu, S. Sampath, S. Asokan, and A. K. Sood, “Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide,” Journal of Biophotonics, vol. 9, no. 7, pp. 760-769, 2016.
[29] Sridevi. S, K. S. Vasu, S. Asokan, and A. K. Sood, “Enhanced strain and temperature sensing by reduced graphene oxide coated etched fiber Bragg gratings,” Optics Letters, vol. 41, no. 11, pp. 2604-2607, 2016.
[30] Lukas Chrostowski, and Krzysztof Iniewski, “High-Speed Photonics Interconnects,” CRC Press, 2013.
[31] Haishan Sun, Antao Chen, Attila Szep, and Larry R. Dalton, “Efficient fiber coupler for vertical silicon slot waveguides,” Optics Express, vol. 17, no. 25, pp. 22571-2257, 2009.
[32] A. S. Sudbø, “Film mode matching: a versatile numerical method for vector mode fields calculations in dielectric waveguides,” Pure and Applied Optics, vol. 2, no. 3, pp. 211–233, 1993.
[33] https://www.photond.com/products/fimmwave/fimmwave_features_21.htm
[34] https://www.photond.com/products/fimmprop/fimmprop_introduction_20.htm
[35] Dominic F. G. Gallagher, Thomas P. Felici, “Eigenmode Expansion Methods for Simulation of Optical Propagation in Photonics - Pros and Cons,” Proceeding SPIE Integrated Optics: Devices, Materials, and Technologies VII , vol. 4987, no. 69, 2003.
[36] Keng-Hsien Lin, “Cladding-modulated Bragg Grating Reflectors on Silicon-on-insulator Platform,” NSYSU master thesis, 2014.
[37] Ivano Giuntoni, Andrzej Gajda, Michael Krause, Ralf Steingrüber, Jürgen Bruns, and Klaus Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Optics Express, vol. 17, no. 21, pp. 18518-18524, 2009.
[38] Thomas Edward Murphy, Jeffrey Todd Hastings, and Henry I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” Journal of Lightwave Technology, vol. 19, no. 12, pp. 1938-1942, 2001.
[39] Marie Verbist, Dries Van Thourhout, and Wim Bogaerts, “Weak gratings in silicon-on-insulator for spectral filters based on volume holography,” Optics Letters, vol. 38, no. 3, pp. 386-388, 2013.
[40] http://cmnst.ncku.edu.tw/files/14-1023-150985,r1924-1.php?Lang=zh-tw
[41] https://zh.wikipedia.org/wiki/电阻率
[42] http://psroc.org.tw/bimonth/download.php?d=1&cpid=184&did=4
[43] Avijit Pramanik, Suhash Reddy Chavva, Zhen Fan, Sudarson Sekhar Sinha, Bhanu Priya Viraka Nellore, and Paresh Chandra Ray, “Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window,” Journal of Physical Chemistry Letters, vol. 5, no. 12, pp. 2150–2154, 2014.
[44] S. Yavuz, C. Kuru, D. Choi, A. Kargar, S. Jina, and P. R. Bandaru, “Graphene oxide as a p-dopant and an anti-reflection. coating layer, in graphene silicon solar cells,” Nanoscale, vol. 8, no. 12, pp. 6224-6231, 2016.
[45] T. Szabó, A. Szeri, and I. Dékány, “Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer,” Carbon, vol. 43, no. 1, pp. 87-94, 2005.
[46] Sungjin Park, and Rodney S. Ruoff, “Chemical methods for the production of graphene,” Nature Nanotechnology, vol. 4, no. 4, pp. 217-24, 2009.
[47] B. C. Brodie, “On the Atomic Weight of Graphite,” Philosophical Transactions, vol. 149, pp. 249-259, 1859.
[48] William S. HummersJr, and Richard E. Offeman, “Preparation of graphitic oxide,” Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339, 1958.
[49] Nina I. Kovtyukhova, Patricia J. Ollivier, Benjamin R. Martin, Thomas E. Mallouk, Sergey A. Chizhik, Eugenia V. Buzaneva, and Alexandr D. Gorchinskiy, “Layer-by-Layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chemistry of Materials, vol. 11, no. 3, pp. 771-778, 1999.
[50] Daniela C. Marcano, Dmitry V. Kosynkin, Jacob M. Berlin, Alexander Sinitskii, Zhengzong Sun, Alexander Slesarev, Lawrence B. Alemany, Wei Lu and James M. Tour, “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806-4814, 2010.
[51] Chun-Hu Chen, Shin Hu, Jyun-Fu Shih, Chang-Ying Yang, Yun-Wen Luo, Ren-Huai Jhang, Chao-Ming Chiang, and Yung-Jr Hung, “Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach” Scientific Reports, vol. 7, no. 3908, 2017.
[52] Anton Lerf, Heyong He, Michael Forster, and Jacek Klinowski, “Structure of Graphite Oxide Revisited,” Journal of Physical Chemistry B, vol. 102, no. 23, pp. 4477-4482, 1998.
[53] P. Ramesh, S. Bhagyalakshmi, and S. Sampath, “Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide,” Journal of Colloid and Interface Science, vol. 274, no. 1, pp. 95-102, 2004.
[54] Fatima Tuz Johra, Jee-Wook Lee, and Woo-Gwang Jung, “Facile and safe graphene preparation on solution based platform,” Journal of Industrial and Engineering Chemistry, vol. 20, no. 5, pp. 2883-2887, 2014.
[55] Sudesh, N Kumar, S Das, C Bernhard, and G D Varma, “Effect of graphene oxide doping on superconducting properties of bulk MgB2,” Superconductor Science and Technology, vol. 26, no. 9, 095008 (8pp), 2013.
[56] Han-Jung Chang, Ping-Chien Chang, and Yung-Jr Hung, “Lloyd's Interference Lithography System Employing Beam Shaping Technique for Wafer-scale Nano-patterning, “ Conference on Lasers and Electro-Optics (CLEO), SM2R.7, 2016.
[57] Yun Wang, Xu Wang, Jonas Flueckiger, Han Yun, Wei Shi, Richard Bojko, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Optics Express, vol. 22, no. 17, pp. 20652-20662, 2014.
[58] John Covey, and Ray T. Chen, “Efficient perfectly vertical fiber-to-chip grating coupler for silicon horizontal multiple slot waveguides,” Optics Express, vol. 21, no. 9, pp. 10886-10896, 2013.
[59] Xu Wang, Wei Shi, Raha Vafaei, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Silicon-on-insulator Bragg gratings fabricated by deep UV lithography,” in Asia Communications and Photonics Conference and Exhibition (ACP), pp.501-502, 2010.
[60] Feng Yang, Meilian Zhao, Zhen Wang, Hongyun Ji, Baozhan Zheng, Dan Xiao, Li Wu and Yong Guo, “The role of ozone in the ozonation process of graphene oxide: oxidation or decomposition,” RSC Advance, vol. 4, pp. 58325-58328, 2014.
[61] Heinz-Helmut Perkampus, “UV-VIS Spectroscopy and Its Applications,” Springer, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code