Responsive image
博碩士論文 etd-0811103-005822 詳細資訊
Title page for etd-0811103-005822
論文名稱
Title
正方晶鈦酸鋇陶瓷的差排圈分析
An Analysis of Dislocation Loops in Tetragonal BaTiO3 Ceramics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-23
繳交日期
Date of Submission
2003-08-11
關鍵字
Keywords
差排圈、鈦酸鋇
dislocation loop, barium titanate
統計
Statistics
本論文已被瀏覽 5722 次,被下載 2515
The thesis/dissertation has been browsed 5722 times, has been downloaded 2515 times.
中文摘要
本論文以無壓力燒結鈦酸鋇陶瓷技術,長時間燒結促進晶粒尺寸長大,且利用穿透式電子顯微鏡觀察分析排差圈。結合“影像對比分析g•b = 0準則”及“影像內-外側法”,求得差排圈的卜格向量為[100]。採用“影像內-外側對比法”分析(g•b)sg值,得知差排圈乃由空缺所造成。以差排圈的高解析穿透式電子顯微鏡影像進一步確定差排圈卜格向量為1/2[100],且為空缺造成,負向部份差排橫臥於{200}。在鈦酸鋇晶粒中,局部TiO2-空缺藉由空缺差排圈的形成來調節適應。推測差排圈的形成原因,乃是鈦原子及氧原子空缺在非計量無壓力燒結過程中,局部聚集所導致。
Abstract
Dislocation loops in pressureless-sintered undoped BaTiO3 ceramics have been analysed via transmission electron microscopy (TEM). The Burgers vector b = [100] of the loops was initially determined by the contrast analysis of the g•b = 0 criteria combining with the inside-outside contrast method by which the sense of the Burgers vector was concluded. The vacancy nature were determined by adopting the inside-outside contrast analysis using the criteria of (g•b)sg being positive or negative when the loops were imaged under kinematical diffraction conditions of sg ≠ 0. High-resolution imaging of such loops has enabled us to confirm its vacancy nature, consistent with the contrast analysis. Further, the loops’ Burgers vector was determined to be b = 1/2[100] and the loops were therefore negative partial dislocation loops lying in {200} where part of the TiO2-deficiency existed locally in the grains of sintered BaTiO3 ceramics was accommodated by the presence of vacancy loops. It is suggested that the extrinsic defects of both titanium and oxygen vacancies ( and ,) generated by the non-stoichiometry which gave clustered during sintering in air are responsible for the formation of the dislocation loops.
目次 Table of Contents
Abstract…………………………………………………………………………….i
Content……………………………………………………………………………..iii
List of Figures……………………………………………………………………...v
List of Tables……………………………………………………………………….x
Chapter 1 Introduction…………………………………………………………..1
Chapter 2 Literature Review
2.1 The structure of perovskites……………………………………….. 2
2.2 Crystal structure of BaTiO3………………………………………... 2
2.3 Structure of tetragonal-BaTiO3………………………………...... 5
2.4 Equilibrium phase diagram of the BaO-TiO2 system…………….. 9
2.5 Abnormal grain growth in BaTiO3………………………………..... 17
2.6 Ferroelectric domains……………………………………………..... 17
2.6.1 Types of ferroelectirc domains…………………………………….. 17
2.7 Defect chemistry of BaTiO3……………………………………….... 21
2.7.1 Intrinsic defects………………………………………………....... 21
2.7.2 Extrinsic defects……………………………………………………... 22
2.8 Dislocation in tetragonal-BaTiO3………………………………….. 22
2.9 Dislocation loops in tetragonal-BaTiO3…………………………… 25
Chapter 3 Experimental Procedures
3.1 Initial powders……………………………………………………..... 27
3.2 Preparation of samples…………………………………………….... 27
3.3 Characterisation of sintered samples……………………….……. 29
3.3.1 X-ray diffractometry…………………………………………........ 29
3.3.2 Scanning electron microscopy…………………………………….... 29
3.3.3 Transmission electron microscopy………………………………….. 30
3.3.4.1 Thin foil preparation…………………………………………....... 31
3.3.4.2 Bright-field and dark-field imaging techniques……………….. 34
3.3.4.3 Weak-beam dark-field imaging………………………………........ 34
Chapter 4 Results
4.1 XRD results………………………………………………………....... 37
4.2 Features of OM and SEM…………………………………….......... 40
4.3 Features of TEM…………………………………………………....... 47
4.3.1 Determining the direction of Burgers vector for dislocation loop… 53
4.3.2 Sense of Burgers vector and loop nature…………………………. 54
4.3.2.1 The (g•b)sg-rule…………………………………………………….... 61
4.3.2.2 Determination of the loop nature………………………………….. 61
4.3.3 High-resolution imaging…………………………………………..... 62
Chapter 5 Discussion
5.1 Burgers vector and atomic model of dislocations……………... 73
5.2 How would have the dislocation loops been formed?……....... 87
Appendices
A-1 JCPDS cards for compounds related to this study………………. 91
A-2 Calibration of 3010AEM…………………………………………...... 96
A-3 Kikuchi SADPs for tetragonal-BaTiO3…………………….……….. 97
A-4 The stereographic projection for tetragonal-BaTiO3………….. 98
A-5 Analysis zones of tetragonal-BaTiO3……………………….…….. 99
References…………………………………………………………………..... ... 102
參考文獻 References
C. H. Chen, Phase transition in umdoped BaTiO3, M.S. Thesis, National Sun Yat-Sen University, Taiwan, 1998.

Y. M. Chiang, D. P. Birnie III and W. D. Kingery, Physical Ceramics; pp. 38-41.
John Wiley, 1976.

Y. M. Chiang, D. P. Birnie III and W. D. Kingery, Physical Ceramics; pp. 102-107. John Wiley, 1976.

Y. M. Chiang and T. Takagi, “Grain-boundary nonstoichiometry in spinels and titanate and strontium titanate: I, high temperature equilibrium space charge,” J. Am. Ceram. Soc., 73 [11] 3278-3285 (1990).

Y. F. Chou, M. H. Lin and H. Y. Lu, "Ferroelectric domains in pressureless-
sintered BaTiO3," Acta mater., 48 [13] 3569-3579 (2000).

B. D. Cullity and S. R. Stock, “Crystal Orientation”; pp.402-03 in Elements of X-Ray Diffraction, Prentice Hall, 2001.

J. Daniels, K. H. Hardtl, D. Hennings and R. Wernicke, “Defect chemistry and electrical conductivity of doped barium titanate ceramics, Part I. electrical conductivity at high temperatures of donor-doped barium titanate ceramics,” Philips Res. Rep., 31 [part 1] 487-504 (1976).

S. B. Desu and D. A. Payne, “Interfacial segregation in pervoskites: III, microstructure and electrical properties,” J. Am. Ceram. Soc., 73 [1] 3407-3415 (1990).

N. Douknan and J. C. Doukhan, “Dislocations in perovskites BaTiO3 and CaTiO3,” Phys. Chem. Minerals, 13, 403-410 (1986).

J. W. Edington, “Section 3.5: Dislocation Loops,” pp.134-144 in Practical Electron Microscopy in Materials Science. Edited by N. V. Philips’ Gloeilampenfabrieken, Eindhoven, (1976).


O. Eibl, P. Pongratz, P. Skalicky and H. Schmelz, “Dislocations in BaTiO3 ceramic,” Phys. Stat. Soc. A, 108, 495-502 (1988).

N. G. Eror and D. M. Symth, “Non-stoichiometric disorder in singlecrystalline BaTiO3 at elevated temperatures,” J. Sol. Stat. Chem., 24, 235-244 (1978).

B. L. Eyre, D. M. Maher and A. F. Bartlett, “Neutron irradiation damage in molybdenum part II. The influence of crystal perfection and irradiation temperature on the damage structure and its annealing behaviour,” Philos. Mag., 23, 439-465 (1971).

H. Föll and M. Wilkens, “A simple method for the analysis of dislocation loops by means of the inside outside contrast on TEM,” Phys. Stat. Sol. A, 31, 519-524 (1975).

M. Fujimoto, “Oxygen defects and microstructure of electronic ceramics,” Seramikkusu (Ceramics), 25 [11] 1044-50 (1990).

F. S. Galasso, Structure and properties of inorganic solid; Pergamon, Oxford, 1970.

H. B. Hannstra and H. Ihring, “Transmission electron microscopy at grain boundaries of PTC-type BaTiO3,” J. Am. Ceram. Soc., 63 [5-6] 288-91 (1980).

D. F. K. Hennings, “Recrystallization of barium titanate ceramics,” Sci. Ceram., 2, 405-409 (1984).

P. B. Hirsch and J. Silcox, “Dislocation loops in quenched aluminium,” Philos. Mag., 3, 897-908 (1958).

Y. H. Hu, H. M. Chan, X. W. Zhang and M. P. Harmer, “Scanning electron microscopy and transmission electron microscopy study of ferroelectric domain in doped BaTiO3,” J. Am. Ceram. Soc., 69 [8] 594-602 (1986).

D. Hull and D. J. Bacon, “Concept of Slip”; pp. 42 in Introduction to Dislocations, 4th edition, Butterworth-Heinemann, Oxford, 2001.

D. Hull and D. J. Bacon, “Concept of Slip”; pp. 55 in Introduction to Dislocations, 4th edition, Butterworth-Heinemann, Oxford, 2001.

B. Jaffee, W. R. Cook and H. Jaffee, “Barium titanate”; pp. 49-114 in Peizoelectric ceramics , Academic Press, N. Y, 1971.

J. Javadpour and N. G. Eror, “Raman spectroscopy of higher titanate phases in the BaTiO3 -TiO2 system,” J. Am. Ceram. Soc., 71 [4] 206-213 (1988).

M. L. Jenkins and M. A. Kirk, “Analysis of small centers of strain: the determination of loop morphologies”; pp. 27-73 in Characterization of radiation damage by transmission electron microscopy, Bristol and Philadelphia, 2001.

P. M. Kelly and R. G. Blake, “The ‘symmetric weak beam’ method and its application to dislocation loop analysis,” Phil. Mag., 28, 475 (1973).

W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Dielectric properties”; pp. 913-974 in Introduction to ceramics, J. Wiley, N. Y, 1976.

K. W. Kirby and B. A. Wechsler, “Phase relations in the barium titanate- titanium oxide system,” J. Am. Ceram. Soc., 74 [8] 1842-1847 (1991).

G. V. Lewis and C. R. A. Catlow and R. E. W. Casselton, “PTCR effect in BaTiO3,” J. Am. Ceram. Soc., 68 [10] 555-558 (1985).

M. H. Lin, Pressureless-sintering and microstructure development of non-stoichiometric barium titanate compositions, PhD Thesis, National Sun Yat-Sen University, Taiwan, 1998.

C. P. Liu, A study of diffuse phase transition in BaTiO3 ceramics, M.S. Thesis, National Sun Yat-Sen University, Taiwan, 1990.

H. Y. Lu, “Functional ceramics,” chapter 7, National Sun Yat-Sen University, Kaohsiung, Taiwan, 1998 (lecture notes).

Z. Mao and K. M. Knowles, “Dissociation of lattice dislocations in SrTiO3,” Philos. Mag. A, 73 [3] 699-708 (1996).

T. E. Mitchell, “Application of transmisssion electron microscopy to the study of deformation in ceramics Oxides,” J. Am. Ceram. Soc., 62 [5-6] 254-267 (1979).

T. Negas, R. S. Roth, H. S. Parker and D. Minor, “Subsolidus phase relations in the BaTiO3-TiO2 system,” J. Solid State. Chem., 9, 297-307 (1974).

J. Nishigaki, K. Kuroda, H. Saka, “Electron microscopy of dislocation structures in SrTiO3 deformed at high temperatures,” Phys. Stat. Sol. A, 128, 319-335 (1991).

H. M. O’Bryan and J. Thomson, “Phase equilibria in the TiO2-rich region of the system BaO-TiO2,” J. Am. Ceram. Soc., 57 [12] 522-526 (1974).

J. P. Poirier, S. Beauchesne and F. Guyot, “Perovskite: a structure of great interest to geophysics and materials science”; pp. 119, Eds A. Navrotsky & D. J. Weiduer, Washington D.C, 1989.

D. E. Rase and R. Roy, “Phase equlibria in the system BaO-TiO2,” J. Am. Ceram. Soc., 38 [3] 102-103 (1955).

J. J. Ritter, R. S. Roth and J. E. Blendell, “Alkoxide precursor synthesis and characterization of phases in the barium-titanium oxide system,” J. Am. Ceram. Soc., 69 [2] 155-162 (1986).

H. Schmelz and A. Meyer, “The evidence for anomalous grain growth below the eutectic temperature in BaTiO3 ceramics,” Ceram. Forum Int., 59, 436-440 (1982).

R. S. Strawn, “Investigation and applications of PLZT ferroelectric ceramics,” PhD Thesis, Arizona State University, 1976.

T. Suzuki, M. Ueno, Y. Nishi and M. Fujimoto, “Dislocation loop formation in nonstoichiometric (Ba,Ca)TiO3 and BaTiO3 ceramics,” J. Am. Ceram. Soc., 84 [1] 200-206 (2001).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code