Responsive image
博碩士論文 etd-0811105-194943 詳細資訊
Title page for etd-0811105-194943
論文名稱
Title
液晶平面顯示器之二氧化矽層化學氣相沉積製程之熱質傳模擬分析
Numerical study for heat and mass transfer of silicon dioxide layer chemical vapor deposition process in a rectangular chamber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-27
繳交日期
Date of Submission
2005-08-11
關鍵字
Keywords
化學氣相沉積、矩形腔體與矩形基座、二氧化矽
CVD, rectangular chamber and substrate, silicon dioxide
統計
Statistics
本論文已被瀏覽 5649 次,被下載 13
The thesis/dissertation has been browsed 5649 times, has been downloaded 13 times.
中文摘要
本文利用商業數值模擬軟體FLUENT,模擬二氧化矽層運用化學氣相沉積於矩形基座之沉積情形,全文把重點放在基座表面的沉積率和熱傳係數Nu值上。本文探討入口區域大小、入口至基座距離、出口區域大小、Re值、基座溫度、兩種反應氣體的入口流量等六個變數對基座表面沉積率的影響。
研究發現,不管我們改變哪個變數時,基座的四個角落都是沉積率最低的區域,且在靠近四個角落的部分,容易產生四個沉積率較高的小區域。當入口區域跟基座一樣大或是比基座大時,或是入口到基座的距離越小,我們發現基座上的沉積率較為均勻。當出口區域越大時,基座中間沉積率較均勻的區域會越大。當Re數增加時,沉積率可以有效的提高,但是均勻度卻沒辦法有效的改善。適當增加基座的溫度能有效的增加基座上的沉積率。改變TEOS跟 之流量比,顯示TEOS是比較重要的反應氣體。適當的流量比率可以有較高的沉積率。
Abstract
This study employed a commercial code FLUENT to simulate a chemical vapor deposition process in a rectangular chamber for deposition of a silicon dioxide layer on a rectangular substrate. We focus on the deposition rate and heat transfer coefficient (Nu number) on the substrate surface. We discuss the effects of the size of inlet region, the distance from inlet to substrate, the size of outlet region, the Reynolds number, the temperature of substrate, the ratio of the inlet flow rates of the two reaction gases on the deposition rate.
The results show that the four corners at the substrate has the lowest deposition rate no matter how the variables are changed. Near the four corners there exist a region with high deposition rate. The deposition rate is more uniform when inlet is larger or equal to the substrate, and when the distance between the inlet and the substrate is small. The larger the size of the outlet region, the larger the uniform deposition rate region present on the central part of the substrate. The deposition rate increases with increasing Re number. However the uniformity remains similarly. The deposition rate also increases with increasing the substrate temperature. A study of the inlet flow rate ratio of TEOS and indicates that TEOS flow rate governs the process. A proper flow rate ratio gives a better deposition rate.
目次 Table of Contents
目錄…………………………………………………………………………..I
圖目錄……………...………………………………………………………IV
表目錄………………………………..……………………………….…VII
論文摘要(中文)…………………………………………………………VIII
論文摘要(英文)……………………………………………………...…IX
符號說明…………………………………………………………………X

第一章 緒論……………………………………………………………...1
1-1 前言………………………………………………………………...1
1-2 研究目的………...………………………………………………..1
1-3 研究方法……….…….……..……………………………………..2
1-4 文獻回顧………..……………………………………………………3
第二章 理論分析……………………………………………………………8
2-1 薄膜沉積的原理……………………………………………………8
2-2 化學氣相沉積的類型………………………………………………11
2-3 化學氣相沉積的主要機制…………………………………………11
2-4 基本假設……………………………………………………………12
2-5 統御方程式…………………………………………………………12
2-6 邊界條件……………………………………………………………14
2-7 無因次化……………………………………………………………15
2-8 混和氣體物理特性…………………………………………………19
第三章 數值方法…………………………………………………………23
3-1簡述…………………....…………………..………………………23
3-2 模擬軟體簡介………………………………………………………23
3-3 Fluent離散方法……………………………………………………25
3-4 層流有限率法………………………………………………………26
3-5 速度與壓力連結……………………………………………………28
3-6 模擬結果驗證………………………………………………………31
3-7 網格驗證……………………………………………………………32
3-8 數值求解流程………………………………………………………32
3-9 鬆弛係數與收斂條件………………………………………………33
3-9-1 鬆弛係數…………………………………………………………33
3-9-2 收斂條件…………………………………………………………33
3-10 物理模型………………………………………………………..…34
3-11 變動參數………………………………………………………..…35
第四章 結果與討論…………………………..……………………………48
4-1 研究內容……...……………………………………………….……48
4-2 腔體入口區域大小對基座沉積率的影響…………………………49
4-3入口到基座距離對基座沉積率的影響……………………………50
4-4腔體出口區域大小對基座沉積率的影響…………………………51
4-5 雷諾數對基座沉積率的影響.………………………………………52
4-6 基座溫度對基座沉積率的影響………………..…………………53
4-7 Nu值之曲線回歸………….……..……………..…..……………53
4-8入口反應氣體流量對基座沉積率的影響……………..…………54
第五章 結論與建議……………….………………………………..……87
5-1 結論…………………………….………………………………87
5-2 建議與未來展望……………………………………………….88
第六章 參考文獻…………………………………………………….….…89
參考文獻 References
[1] 莊達仁, VLSI製造技術,高力圖書有限公司,2000
[2] Hong Xiao,譯者:羅正忠,張鼎張,半導體製程技術導論,學銘圖書有限公司-歐亞書局有限公司,2003
[3] 顧鴻壽,光電液晶平面顯示器技術基礎及應用,新文京開發出版股份有限公司,2004
[4] 陳志強,低溫複晶矽(LTPS)顯示器技術,全華科技圖書股份有限公司,2004
[5] G. Luo, S.P. Vanka*, N. Glumac “Fluid flow and transport in a large area atmosphere pressure stagnation flow CVD reactor for deposition of thin films” International Journal of Heat and Mass Transfer 47 (2004) 4979-4994
[6] 王啟明,化學氣相沉積之熱流場分析,國立中山大學機械與機電工程研究所碩士論文,2001
[7] 李鴻傑,有機金屬化學氣相沉積出口效應之數值模擬,國立中山大學機械與機電工程研究所碩士論文,2002
[8] 姜彥竹,化學氣相沉積技術運用於平面顯示器腔體之熱流模擬分析, 國立中山大學機械與機電工程研究所碩士論文,2004
[9] Y Kusumoto, T. Hayashi. and S. Komiya. ”Numerical Analysis of the transport Phenomena in MOCVD Process” ,Jap. J. Appl. Phys.,Vol.24 ,No.5. pp620-625.1985.
[10] G. Evans. K. Grei. ”Effects of Boundary Conditions on the Flow and Heat Transfer in Rotating disk Chemical Vapor Deposition Reactor”, Numerical Heat Transfer, Vol.12 , pp.243-252. 1987
[11] S. Patnaik, R. A. Brown. C. A. Wang, “Hydrodynamic Dispersion in Rotation-Disk OMVPE Reactor: Numerical simulation and Experimental measurements”, J. Crystal Growth, Vol.96 .pp.153-174,1989
[12] D. I. Fotiadis. S. Kieda. K. F. Jensen, “Transport Phenomena in Vertical Reactor for Metalorganic Vapor Phase Epitaxy” ,J. Crystal Growth. Vol.102, pp.441-470, 1990
[13] C. Weber, C. C. van, D. Keijser, “Modeling of Gas-Flow Patterns in a Symmetric Vertical Vapor-Phase Epitaxy Reactor Allowing Asymmetic Solutions” , J. appl.Phys., Vol.64, No.4 ,pp2109-2118, 1990
[14] C. H. Chen, C. A. Larsen, G.B. Stringfellow, D.W. Brown and A. J. Robertson, ”MOVPE Growth of Inp Using Isobutylphosphine and Butylphosphine” ,Journal of Crystal Growth, 1994
[15] Z. Nami , Student Member, IEEE, A. Erbil, G. S. May, Member, IEEE, “Reactor Design Considerations for MOCVD Growth of Thin Film”, IEEE Transaction on Semiconductor Manufacturing, Vol. 10, No.2, May, pp295-306,1997
[16] Y. K. Chae, Y.E gashira, Y. Shimogaki, K. Sugawara, and H. Komiyama, “Chemical Vapor Deposition Reactor Design Using Small-Scale Diagnostic Experiments Combined with Computational Fluid Dynamics Simulation” , Journal of The Electrochemical Society,146(5)1780-1788,1999
[17] T. Otto, H. Wolf, R. Streiter, A. Dehoff, K. Wandel, and T. Gessner, “Process and Equipment Simulation of Dry Silicon Etching in the Absence of Ion Bombardment”, Microelectronic Engineering, vol. 45(1999), p377-391
[18] W. K.Cho , D. H. Choi , M. U. Kim ”Technical Note Optimization of inlet concentration profile for uniform deposition in a cylindrical chemical vapor deposition chamber” International Journal of Heat and Mass Transfer 42,pp1141-1146,1999
[19] Y. Gao.*Daniel A. Gulino.*and Ryan Higgins** ”Effects of susceptor geometry on gan growth on si(111) with a new MOCVD reactor” MRS Internet J. Nitride Semicon. Res.4s1.G3.53.1999
[20] H. V. Santen, C. R. Kleijn, Harry E. A. Van Den Akker “On turbulent flows in cold-wall CVD reactors” J. C. Growth212(2000)299-310
[21] H. V. Santen, C. R. Kleijn, Harry E. A. Van Den Akker “Symmetry Beraking in a stagnation-flow CVD reactor” Journal of Crystal Growth212(2000)299-310
[22] Michael E. Coltrin*, Pauline Ho, Harry K. Moffat, Richard J. Buss “Chemical kinetics in chemical vapor deposition: growth of silicon dioxide from tetraethoxysilane(TEOS)” Thin Solid Film 365(2000) 251-263
[23] R. Stolle, Georg Wahl* “Direct transfer of kinetic data from a microbalance into a tube reactor for CVD BN on SiC Fabric” Chem. Vap. Deposition 2000,6,No. 2
[24] Chase, M. W. “JANAF thermochemical tables” Washington, D.C.: American Chemical Society; c1986. New York :American Institute of Physics for the National Bureau of Standards
[25] Robert C. Reid, John M. Prausnitz, Thomas K. Sherwood “The property of gases and liquids” New York: McGraw-Hill, c1997
[26] I. Barin, O. Knacke, O. Knbaschewski “Thermochemical properties of inorganic substances” New York: Springer-Verlag, 1977
[27] I. A. Shareef, G. W. Rubloff, M. Anderle, W. N. Gill, J.Cotte, D. H. Kin ”Subatmospheric chemical vapor deposition ozone/TEOS process for Sio2 trench filling” J. Vac. Sci. Technol. B 13(4),1995
[28] S. Romet, M. F. Couturier, T. K. Whidden “Modeling of silicon dioxide chemical vapor deposition from tetraethoxysilane and ozone” Journal of The Electrochemical Society, 148(2) G82-G90(2001)
[29] 利鴻正,化學氣相沉積製程最適化設計,國立中興大學化學工程學研究所碩士論文,2002
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.12.240
論文開放下載的時間是 校外不公開

Your IP address is 3.142.12.240
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code