Responsive image
博碩士論文 etd-0811109-145720 詳細資訊
Title page for etd-0811109-145720
論文名稱
Title
正交分頻多工系統中全盲式訊雜比估測與通道長度估測
Blind SNR and Channel Length Estimation in OFDM Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
66
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-24
繳交日期
Date of Submission
2009-08-11
關鍵字
Keywords
通道長度估測、正交分頻多工、虛擬子載波、雜訊變異數估測
Orthogonal Frequency Division Multiplexing (OFDM), SNR estimation, virtual carriers (VC)
統計
Statistics
本論文已被瀏覽 5634 次,被下載 2759
The thesis/dissertation has been browsed 5634 times, has been downloaded 2759 times.
中文摘要
在一般的正交分頻多工的演算法中,有個相當重要的演算法就是通道估測,因為在無線的環境下傳輸,傳輸的訊號會通常會受到通道的影響,改變其振幅與相位,並且無線通道通常也具有多重路徑效應,造成符際干擾,但如果能預先知道通道長度,就可以減低運算複雜度,增加運作的效能。本篇論文特別研究了如何利用已知的雜訊功率與提出的價值函數來達到通道長度估測,另外也提出了當在載波頻率偏移的情況下做通道長度估測的方法。
而雜訊功率是正交分頻多工系統中一項重要的參數,利用這項數值,可以做到最小平均平方誤差的通道估測,像是渦輪碼、功\率分配也須用到這項參數來動作。而我們的方法是利用虛擬子載波,再讓快速富立葉矩陣做奇異值分解,利用其矩陣的特殊性質達到雜訊變異數估測。而且所提出的方法不像傳統的方法需要用到循環字首,我們可以不用到循環字首而達到更好的效能。
Abstract
In many algorithms for Orthogonal Frequency Division Multiplexing (OFDM) systems, the channel estimation is one of the most essential factors. In wireless environment, channel is change very fast, and the channel has multipath effect, the channel length is obtained by channel estimation. In this paper, we estimation the channel length and the SNR by virtual carriers (VC) and Singular value decomposition, when channel estimator known the information for channel length, then calculate complicated can be reduced. Besides, we proposed the estimated method at carriers frequency offset effect.
Noise variance (or noise power) can improve performance of channel estimator, e.g. MMSE channel estimator, turbo code or power allocation. In this paper, we were estimate noise variance by using the blind method of property of orthogonality of matrix, which is differed from the traditional method of Pilots.
目次 Table of Contents
第一章 導論 1
1.0 引言 1
1.1 研究動機 2
1.2 論文架構 2
1.3 標記法 3
第二章 正交分頻多工系統 4
2.0 引言 4
2.1 正交分頻多工系統的架構 4
2.3 常見的正交分頻多工通道估測法 7
2.4 正交分頻多工之全盲式雜訊變異數估測 11
第三章 奇異值分解法介紹 13
3.0 引言 13
3.1 奇異值分解的特性 13
第四章 訊號雜訊比估測器 16
4.0 引言 16
4.1 全盲式雜訊變異數估測 16
4.2 全盲式訊號功率估測 19
4.3 全盲式訊號雜訊比估測 21
4.4 考慮有CFO情況下之全盲式訊號雜訊比估測 22
第五章 全盲式通道長度估測器 24
5.0 引言 24
5.1全盲式通道長度估測 24
5.2同步誤差下之全盲式通道長度估測 29
5.3不同通道模型下通道長度估測器效能分析 33
第六章 模擬結果 39
6.1 所提出的非資料補助型訊號與雜訊比效能 40
6.2 所提出的全盲式通道長度估測效能 45
第七章 結論 48
中英對照表 49
全名縮寫對照表 52
參考文獻 54
參考文獻 References
[1]Digital video broadcasting DVB: Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed. 2000.
[2]Radio broadcasting system: Digital audio broadcasting DAB to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed. 2000.
[3]IEEE Part 11: Wireless LAN Medium Access Control MAC and Physical Layer PHY Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[4]IEEE Standard for Local and Metropolitan Area Networks, IEEE Std. 802.16-2004, Oct. 2004.
[5]A. P. Liavas, P. A. Regalia, and J.-P. Delmas, “Blind channel approximation: effective channel order determination,” IEEE Trans. Signal Process., vol. 47, pp. 3336-3344, Dec. 1999.
[6]H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Automat. Contr., vol. 14, pp. 716-723, Dec. 1974.
[7]T. Zhenzhou and H. Qian, “An improved channel order estimation method for OFDM systems based on MDL criterion.” in Proc. IEEE ICCT., Nov. 2008, pp.155-158.
[8]D. Kotoulas, P. Koukoulas, and N. Kalouptsidis, “Subspace projection based blind channel order estimation of MIMO systems,” IEEE Trans. Signal Process., vol. 54, pp. 1351-1363, Apr. 2006.
[9]W. H. Gerstacker and D. P. Taylor, “Blind channel order estimation based on second-order statistics,” IEEE Trans. Signal Process., vol. 10, pp. 39-42, Feb. 2003.
[10]A. P. Liavas and P. A. Regalia, “On the behavior of information theoretic criteria for model order selection,” IEEE Trans. Signal Process., vol. 49, pp. 1689-1695, Aug. 2001.
[11]J. Via, I. Santamaria, and J. Pérez, “Effective channel order estimation based on combined identification/equalization,” IEEE Trans. Signal Process., vol. 54, pp. 3518-3526, Sep. 2006.
[12]L. Tong and Q. Zhao, “Joint order detection and blind channel estimation by least squares smoothing,” IEEE Trans. Signal Process., vol. 47, pp. 2345-2355, Sep. 1999.
[13]X. Li and H. H. Fan, “Blind channel identification: subspace tracking method without rank estimation,” IEEE Trans. Signal Process., vol. 49, pp. 2372-2382, Oct. 2001.
[14]T. Cui and C. Tellambura, “Power delay profile and noise variance estimation for OFDM,” IEEE Commun. Lett., vol. 10, pp. 25-27, no. 1, Jan. 2006.
[15]F.-X. Socheleau, A. Aissa-El-Bey, and S. Houcke, “Non data-aided SNR estimation of OFDM signals,” IEEE Commun. Lett., vol. 12, pp. 813-815, Nov. 2008.
[16]H. Xu, G Wei, and J. Zhu, “A novel SNR estimation algorithm for OFDM,” in Proc. IEEE VTC., Jun. 2005, vol. 5, pp. 3068-3071.
[17]Y. Wang, L. Li, P. Zhang, Z. Liu, and M. Y. Zhou, “A new noise variance estimation algorithm for multiuser OFDM systems,” in Proc. IEEE PIMRC, Sep. 2007, pp. 1-4.
[18]C. Y. Li and S. Roy, “Subspace-based blind channel estimation for OFDM by exploiting virtual carriers,” IEEE Trans. Wireless Commun., vol. 2, pp. 141-150, Jan. 2003.
[19]O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P. O. , “OFDM channel estimation by singular value decomposition,” IEEE Trans. Commun., vol. 46, pp. 931-939, Jul. 1998.
[20]L. Deneire, P. Vandenameele, L. van der Perre, B. Gyselinckx, and M. Engels, “A low-complexity ML channel estimator for OFDM” IEEE Trans. Commun., vol. 51, no. 2, pp. 135-140, Feb. 2003.
[21]K. Konstantinides and K. Yao, “Statistical analysis of effective singular values in matrix rank determination,” IEEE Trans. Signal Process., vol. 36, pp. 757-763, May 1988.
[22]X. Xu, Y. Jing, and X. Yu, “Subspace-based noise variance and SNR estimation for OFDM systems,” in Proc. IEEE WCNC., Mar. 2005, vol. 1, pp. 23-26.
[23]D. N. Van, H.-P Kuchenbecker, and M. Patzold, “Estimation of the channel impulse response length and the noise variance for OFDM systems,” in Proc. IEEE VTC., Jun. 2005, vol. 1, pp. 429-433.
[24]X. Wang, H.-C. Wu, S. Y. Chang, Y. Wu, and J.-Y Chouinard, “Analysis and algorithm for non-pilot-aided channel length estimation in wireless communications,” in Proc. IEEE GLOBECOM, Dec. 2008, pp.1-5.
[25]S. Boumard, “Novel noise variance and SNR estimation algorithm for wireless MIMO OFDM systems,” in Proc IEEE GLOBECOM, Dec. 2003, vol. 3, pp. 1- 5.
[26]J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. , “On channel estimation in OFDM systems,” in Proc. IEEE VTC., Jul. 1995, vol. 2, pp. 815-819.
[27]C. Li, M.-O. Pun, and S. Roy, “Low complexity blind frequency-offset estimator for OFDM systems over ISI channels,” in Proc. IEEE GLOBECOM, Nov. 2002, vol. 1, pp. 249-251.
[28]S. J. Leon, Linear Algebra with Applications, 6th ed. New Jersey: Prentice-Hall, 2002.
[29]R. C. Penney, Linear Algebra, 2th ed. New Jersey: John Wiley & Sons, 2004.
[30]Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code