Responsive image
博碩士論文 etd-0811109-160253 詳細資訊
Title page for etd-0811109-160253
論文名稱
Title
水蒸氣與二氧化碳對大氣溫度之影響
The Effects of Water Vapor and Carbon Dioxide on Atmospheric Temperature
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
51
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-30
繳交日期
Date of Submission
2009-08-11
關鍵字
Keywords
溫室效應、氣候變遷、溫室氣體、二氧化碳、水蒸氣、輻射傳遞、全球暖化
carbon dioxide, climate change, greenhouse gases, water vapor, greenhouse effects, radiation transfer, Global warming
統計
Statistics
本論文已被瀏覽 5641 次,被下載 0
The thesis/dissertation has been browsed 5641 times, has been downloaded 0 times.
中文摘要
在本文中,本研究探討觀點在於說明在高度小於十公里(對流層)之水蒸氣與二氧化碳對溫度和熱傳遞可能會造成之變化以及影響。並且證明解釋現實的溫度、壓力以及氣體濃度...等等輻射影響因子對輻射特性之影響。
本文將對大氣中可能遭遇之熱傳問題進行系統地評估以及假設。為了簡化問題,本模擬程式將熱傳方程式假定為一維,並且只純粹探討傳導以及輻射的模式。太陽光可穿過大氣層之波長範圍介於短波長範圍接近可見光(波長約在0.4至0.7μm )的區間,然後其穿過之太陽光部分被空氣吸收、反射以及被地表吸收。地表吸收太陽光造成地表溫度上升,然後以黑體方式發散長波長輻射。探討水蒸氣與二氧化碳之吸收與穿透方面,水蒸氣在長波範圍(8至12μm )部分穿透、吸收(穿透為主);二氧化碳具有三個長波範圍吸收波段分別以15μm、10.4μm、9.4 μm為中心尖峰。
根據數值分析出來之結果,本研究可以證明水蒸氣以及二氧化碳為造成溫度差異高達攝氏2至5度最重要的影響因子。
Abstract
The effects of water vapor and carbon dioxide on temperature and heat transfer in the troposphere layer, which is less than the altitude of 10 km, in the atmosphere are presented in this work. Accounting for realistic temperature- and pressure- or concentration-dependent radiative properties, this work systematically evaluates heat transfer encountered in atmosphere. For simplicity, the heat transfer is assumed to be one-dimensional and pure conduction and radiation modes. The solar irradiation penetrates through the atmosphere within its short wavelength range near around visible range between 0.4-0.7 μm , and absorbed and reflected by the earth ground with a black body property. The ground emits radiation in longwave range. Water vapor is transparent to longwave range 8-12 μm , whereas carbon dioxide is absorbed in three long wavelength bands centered at 15, 10.4 and 9.4 μm , respectively. The computed results quantitatively show that water vapor and carbon dioxide are the most important factors affecting temperature difference around 2 and 5 Celsius degrees.
目次 Table of Contents
目錄
頁次
謝誌 Ⅰ
目錄 Ⅱ
圖目錄 Ⅳ
符號說明 Ⅵ
中文摘要 Ⅷ
英文摘要 Ⅸ
第一章 緒論 1
1.1 前言與文獻回顧 1
1.2 研究動機 4
1.3 研究目的 6
1.4 本文架構 7
第二章 系統模型之假設與理論分析 8
2.1 理論模型與假設 8
2.2 在空氣中之熱方程式 10
2.3 在地殼表面的熱方程式 14
2.4 邊界條件 15
第三章 結果與討論 19
3.1 印證實驗以及模擬數據 20
3.2 現實大氣模擬結果 24
第四章 結論 38
參考文獻 39
參考文獻 References
[1]J.B. Fourier,1822, “The'orie Analytique de la Chaleur, Paris (translated by Dover,1955).
[2]J. Tyndall,1861.“On the Absorbtion and Radiation of Heat by Gases and Vapours, and on the Physical Connexion of Radiation, Absorbtion and conduction—the Bakerian Lecture.” Philosophical Magazine (Series 4), Vol. 22, pp. 169-194.
[3]S. Arrhenius,1896.“On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground”,.Philosophical Magazine, Vol. 41, pp. 237–276.
[4]G.P. Callendar,1938.“The Artificial Production of Carbon Dioxide and Its Influence on Climate.” Quarterly J. Royal Meteorological Society, Vol. 64, pp. 223-240.
[5]F. Andre and R. Vaillon,2008.“The spectral-line moment-base(SLMB) modeling of the wide band and global blackbody-weighted transmission function and cumulative distribution function of the absorption coefficient in uniform gaseous media.”Journal of Quantitative Spectroscopy & Radiative Transfer, 109, 2401-2416
[6]Yu.I. Baranov, W.J. Lafferty, Q. Ma, and R.H. Tipping,2008 “Water-vapor continuum absorption in the 800-1250 cm-1 spctral region at temperatures from 311 to 363K.” Journal of Quantitative Spectroscopy & Radiative Transfer, 109, 2291-2302
[7]D.E. Burch, W.L. France,and D. Williams,1963:“Total aborptance of Water Vapor in the Near Inrared” APPLIED OPTICS, Vol. 2,pp 585-589.
[8]D.E. Burch, D.A. Gryvnak,and D. Williams,1962:“Total absorptance of Carbon dioxide in the infrared.”APPLIED OPTICS,Vol. 1, pp.759-765.
[9]O. Marin, R.O. Buckius,1998:“A simplified wide band model of the cumulative distribution function for water vapor.” International Journal of Heat and Mass Transfer, Vol 41 ,pp. 2877-2892.
[10]M.F. Modest, Radiative Heat Transfer, McGraw-Hill,1993,New York.
[11]M.F. Modest, and S. P. Bharadwaj, 2001:“Medium resolution transmission measurements of CO2 at high temperature.” ”Journal of Quantitative Spectroscopy & Radiative Transfer,vol. 73,pp.329-338.
[12]M.F. Modest, and S.Tabanfar,1983: “A Multi-Dimensional Differential Approximation for Absorbing/Emitting Anistropically Scattering Media with Collimated Irradiation.”Journal of Quantitative Spectroscopy & Radiative Transfer,vol. 29,pp.339-351.
[13]M.F. Modest, and K. K. Sikka,1991:The application of the stepwise-gray P-1 Approximation to molecular gas-particulate mixtures.” Fundamentals of Radiation heat transfer,vol. HTD-160, pp. 97-103.
[14]J.C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon
and R. K. Long,1979:“ Water vapor-Nitrogen absorprion at CO2 laser frequencies.”APPLIED OPTICS, Vol. 18,pp. 834-841.
[15]L. Rayleigh,1900: “The law of complete radiation.” Phil. Mag., vol 49, pp. 539-540.
[16]R.E. Roberts, J. E. A. Selby, and L. M. Biberman,1976: “Infrared continuum absorption by atmospheric water vapor in the 8-12-μm window.” APPLIED OPTICS,Vol. 15, pp2085-2090.
[17]V.R. Stull, P.J. Wyatt, and G.N. Plass,1964: “The infrared Transmittance of carbon dioxide.” APPLIED OPTICS, Vol. 3, pp. 243-254.
[18]M.E. Thomas and R. J. Nordstrom,1985:“ Line shape model for describing infrared absorption by water vapor.” APPLIED OPTICS, Vol. 24, pp. 3526- 3530.
[19]D.C. Tobin, L. L. Strow, W. J. Lafferty, and W. Bruce Olson,1996: “Experimental investigation of the self- and N2-broadened continuum within the N2 band of water vapor.”APPLIED OPTICS, Vol. 35, pp. 4726-4734.
[20]R.A. Rohde,2007.Image: Atmospheric Absorption Bands. Retrieved October 3,2008,from Globa lWarming Art. 
[21http://www.globalwarmingart.com/wiki/Image:Atmospheric_Absorption_Bands_png
[22http://climatechangeskeptic.wordpress.com/2008/07/10/humidity-data/
[23http://rabett.blogspot.com/2007_07_01_archive.html
[24]P. Elliott and D.J. Gaffen, 1992: “Relationships between tropospheric water vapor and surface temperature as observed by radiosondes.”Geophysical research letters,Vol. 19, pp. 1839-1842.
[25]I. Xueref The Atmospheric Tracers,2003: “Team Vertical transport in deep convection as inferred from coupling concentrations of CO2 and other species in CRYSTAL-FACE with the STILT back trajectory model and the DHARMA mesoscale model.” EGS - AGU - EUG Joint Assembly, Abstracts from the meeting held in Nice, France, 6-11, abstract #12923.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.98.108
論文開放下載的時間是 校外不公開

Your IP address is 3.142.98.108
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code