Responsive image
博碩士論文 etd-0811109-163540 詳細資訊
Title page for etd-0811109-163540
論文名稱
Title
利用GPS與聲學量測進行海床應答器之定位
Positioning of Seafloor Transponders Using GPS and Acoustic Measurements
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-23
繳交日期
Date of Submission
2009-08-11
關鍵字
Keywords
海底板塊、板塊位移、收發器、應答器、底碇架、聲學量測
lander, GPS, Ray tracing, Transceiver, Transponder, seafloor, deformation
統計
Statistics
本論文已被瀏覽 5687 次,被下載 1241
The thesis/dissertation has been browsed 5687 times, has been downloaded 1241 times.
中文摘要
海洋板塊的位移監測,通常是在海床佈放應答器,再透過GPS與聲學斜距量測來估算出該應答器的位置。
不過,目前相關的研究僅能以斜距量測誤差來做為應答器定位的精度。為了進一步驗證應答器的相對定位量測精度,
本研究設計了一台海床應答器底碇架。該底碇架可同時安裝三個應答器,應答器中心所形成的三角形邊長分別為 1.505公尺、1.505公尺、1.160公尺。此外,為了獲得底碇架坐落於海床上的姿態,本研究也開發了一套姿態記錄器,並將之安裝於底碇架上。本研究透過實海域測試,將應答器底碇架佈放於高雄外海約300公尺水深之海床,並沿著規劃的直線測線收集GPS與斜距資料。在考慮水層聲速剖面條件下,將收集的資料利用最佳化方法與聲線法(Ray tracing method)來估算每一個應答器的絕對位置座標,藉此獲得量測得到的應答器相對位置與實際相對位置的差異,以瞭解應答器的相對定位估算精度。由實海域量測資料分析結果可知,定位量測估算的應答器座標所形成的三角形邊長分別為1.533公尺、1.518公尺、1.184公尺,與實際邊長誤差小於 3 公分。此外,根據姿態記錄器的記錄資料,可得到底碇架坐底時的艏向(Heading)、縱搖(Pitch)、與橫搖(Roll)角度分別為123.5 度、0.63 度、0.62度,而根據應答器定位所估測的底碇架艏向(Heading)、縱搖(Pitch)、與橫搖(Roll)角度分別為120.45度、6.43度、2.51度,姿態誤差分別為3.05 度、5.8度、1.89度,以內。此一結果驗證了本研究所使用的定位方法可以達到$2$公分的相對定位精度,也驗證了本研究採用最佳化定位方法的可信度與可行性。
Abstract
Observing seafloor crustal deformation is often composed of acoustic ranging and GPS positioning techniques, which involves positioning of a single seabed transponder. Generally, the positional uncertainty of the seabed transponder is evaluated in terms of the slant range residuals. In order to further verify the relative positioning accuracy between seabed transponders, this study designed and fabricated a transponder lander. Three transponders were mounted on the lander to form a triangle with sides 1.505, 1.505 and 1.160 m. In addition, a data acquisition and logging system is developed to collect the lander’s attitude, including pitch, roll, heading, and accelerations in three orthogonal axes. A field experiment to verify the relative positioning accuracy between seabed transponders was carried out off the coast of Kaohsiung Harbor, Taiwan. The transponder lander was deployed on the seabed at a water depth of about 300 m. Based on the attitude data collected by the logging system, the heading, pitch and roll of the transponder lander on the seabed are 123.5 degrees, 0.63 degrees and 0.62 degrees, respectively. A vessel was sailed along predetermined paths to collect observations of GPS and acoustic slant range. Then, an optimization technique combined with ray tracing method was used to estimate the positions of three transponders. The position estimates of the three transponders form a triangle with sides 1.533, 1.518 and 1.184 m, which shows that, comparing with the true values, the relative positioning error between transponders is less than 3 cm. Furthermore, based on the estimates of the transponder positions, the heading, pitch and roll of the transponder lander are calculated as 120.45 degrees, 6.43 degrees and 2.51 degrees, respectively, which are in good agreement with that measured by the attitude logging system. The experimental and evaluation results indicate that the optimization technique along with the ray tracing method is practical for precisely estimating the transponder position.
目次 Table of Contents
目錄
第一章 緒論 1
1.1 研究動基與目的……………………………………………..1
1.2 文獻回顧………….………………………………………….2
1.3 論文架構……………….....………………………………….3
第二章 海床應答器定位 4
2.1 定位誤差來源…………….………………………………….4
2.2收發器大地座標位置……………………..………………….6
2.3 應答器定位之最佳化求解…………………………………10
第三章 底碇架系統設計 13
3.1 底碇架設計考量……………......…………………………..13
3.2姿態記錄……………………………………….……………17
3.2.1 水密箱設計…………….................……………………17
3.2.2 記錄板電路與資料結構…………………….........……20
3.2.3 動態資料解讀……………………….…………………25
3.3 底碇架組裝及測試…………………………………………25
第四章 實海域測試 36
4.1 儀器規格與架設………………………...... ……………….36
4.2底碇架佈放與資料量測…………………………....……….37
4.3定位分析結果……………………………………………….46
第五章 結論與討論 52
5.1 結論…......…………………………………………………..52
5.2 建議………............…………………………………………53
參考文獻.......................................................................................54
參考文獻 References
H.H.Chen, (2008). In-situ alignment calibration of attitude and ultra short baseline sensors for precision underwater positioning. Ocean Engineering 35 (2008) 1448–1462.
H.H.Chen and C.C.Wang,(2007) Optimal Localization of a Seafloor Transponder in Shallow Water Using Acoustic Ranging and GPS Observations. Ocean Engineering,Vol.34, Nos.17-18, pp. 2385-2399,2007.
Spiess, F.N., Chadwell, C.D., Hildebrand, J.A., Young, L.E., Purcell Jr., G.H., Dragert, H., (1998). Precise GPS/acoustic positioning of seafloor reference points for tectonic studies. Physics of the Earth and Planetary Interiors 108, 101–112.
Sweeney, A.D., Chadwell, A.D., Hildebrand, J.A., Spiess, F.N., (2005). Centimeter-level positioning of seafloor acoustic transponders from a deeply-towed interrogator. Marine Geodesy 28, 39–70.
Yamada, T., Ando, M., Tadokoro, K., Sata, K., Okuda, T., Oike, K., (2002). Error evaluation in acoustic positioning of a single transponder for seafloor crustal deformation measurements. Earth Planets Space 54, 871–881.
Nakamura, M., Ando, M.,Matsumoto, T., Furukawa, M., Tadokoro, K., Furumoto, M., (2006). The Assumed Aseismic Subduction and the Necessity of Ocean-Bottom Crustal Deformation Measurements at the Ryukyus, Japan, Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract T21F-03.
Obana, K., Katao, H., Ando, M., (2000). Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea. Earth Planets Space 52, 415–423.
Osada, Y., Fujimoto, H., Miura, S., Sweeney, A., Kanazawa, T., Nakao, S., Sakai, S., Hildebrand, J. A., Chadwell, C. D., (2003). Estimation and correction for the effect of sound velocity variation on GPS/acoustic seafloor positioning: an experiment off Hawaii Island. Earth Planets Space 55, e17-e20.
Kussat, N. H., Chadwell, C. D., Zimmerman, R., (2005). Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements. IEEE Journal of Oceanic Engineering 30 (1), 153-164.
McLean, S., S. Macmillan, S. Maus, V. Lesur, A. Thomson, and D. Dater, December 2004, The US/UK World Magnetic Model for 2005-2010, NOAA Technical Report NESDIS/NGDC-1.
Yu, S.B., Chen, H.Y. and Kou, L.C. (1997)Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Yu, S.B., and Kuo, L.C., (2001) Present-day crustal motion along the Longitudinal Valley fault, eastern Taiwan, Tectonophysics, 333, 199-217.
蕭毓宏,王兆璋,黃明志,以省電型微處理器為基礎之水下聲響記錄器,中華民國音響學會第十九屆學術研討會論文集,2006
劉金源,水中聲學-水聲系統之基本操作原理,國立編譯館,2001。
杜廣文,超短基線定位之感測器對準偏差修正,國立中山大學碩士論文,1996。
李祖寧,劉序儼,吳紹組,陳光,台灣海峽兩岸地殼相對運動分析,大地測量與地球動力學,第27卷,第五期,2007。
蕭毓宏,ROV操控訓練系統模擬之發展,國立中山大學碩士論文,2004。
陳心怡,台灣南部地殼變形分析:1995-2005年GPS觀測,國立成功大學碩士論文,2005。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code