Responsive image
博碩士論文 etd-0811111-144800 詳細資訊
Title page for etd-0811111-144800
論文名稱
Title
開發金奈米組合電極微晶片於維拉帕米的電化學分析
Develop Microchip with Gold Nanoelectrode Ensemble Electrodes for Electrochemical Detection of Verapamil
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-27
繳交日期
Date of Submission
2011-08-11
關鍵字
Keywords
血清濃度偵測、臭氧前處理、循環伏安法、維拉帕米、金奈米電極電化學微晶片
analysis of serum sample, gold nanoelectrode ensemble, microchip, Verapamil, cyclic voltammetry, ozone pretreatment
統計
Statistics
本論文已被瀏覽 5666 次,被下載 3
The thesis/dissertation has been browsed 5666 times, has been downloaded 3 times.
中文摘要
Verapamil主要用於治療高血壓、心絞痛、心律不整等疾病。近年來,新的Verapamil治療用途不斷被開發,如躁症和癌症化療輔助藥物,因此在臨床上準確測定Verapamil濃度是非常必須且必要的。目前臨床分析Verapamil濃度的方法主要是使用高效能液相層析 (HPLC) 搭配UV或螢光偵測器,但其缺點為儀器設備成本昂貴、操作複雜和分析時間較久。
Verapamil化學結構及特性都相當穩定,在一般的電化學檢測結果並不具有電化學反應活性。本研究開發出創新的臭氧前處理法,透過打斷Verapamil分子進而造成 Verapamil結構的改變。經臭氧處理後的Verapamil經電化學量測,具有良好的電化學活性。使用光譜和質譜分析方法都驗證了Verapamil結構的改變,質譜分析更進一步推導出其可能的反應機轉。
本研究開發之電化學微晶片是以金奈米組合電極 (GNEE) 作為工作電極,因金奈米電極具有良好的電化學反應催化性、高靈敏度和高選擇性。整體的分析系統架構是利用金奈米組合電極電化學微晶片搭配循環伏安儀做作電化學分析檢測。此系統優於傳統檢測方法之處為所開發之晶片具有體積小、所需樣品量極小、偵測速度快、容易操作和成本低廉等。
此金奈米組合電極電化學微晶片對於Verapamil水溶液濃度的偵測極限可達10 ng/mL,在100 μg/mL到10 ng/mL範圍內更可達到良好的線性。在血清樣本濃度分析方面,即使是1 ng/mL濃度的Verapamil仍具有良好的電化學活性表現,並在1 ng/mL到100 μg/mL濃度範圍內呈現良好的線性。依據本研究結果可知,金奈米電極電化學微晶片對臨床血清藥物濃度之偵測,確實深具實際應用的可行性。
Abstract
Verapamil is a commonly used medicine for the treatment of supraventricular arrhythmias, angina and hypertension. Recently, some newly developed applications of Verapamil, such as treating hypomania and chemotherapy for cancers, have been reported. Thus, monitoring the concentration of Verapamil accurately is very important. The major clinical analytical methods of Verapamil concentration determination are high performance liquid chromatography (HPLC) with UV or with fluorescence detector. However, these analytical methods have some disadvantages, like expensive instruments, complex operation, and time-consuming etc.
The chemical structure and properties of Verapamil are very stable. The preliminary result of electrochemical analysis doesn’t show any electrochemical activity. In this study, we developed an innovative ozone pre-treatment method to oxidize Verapamil to the smaller molecules and change its structure. Verapamil have excellent electrochemical activity after ozone pre-treatment. The spectroscopy and mass spectrometry show the changes of Verapamil structure. The products of Verapamil treated with ozone are also predicted by mass spectrometry.
The gold nanoelectrode ensemble electrodes (GNEE) are used as working electrode for its good catalytic activity of electrochemical reaction, high sensitivity and high selectivity. The overall experimental framework of this study is microchip with GNEE working electrode accompanied by cyclic voltammetry, an electrochemical analytical instrument. Compared with traditional analytical methods, the system has some advantages such as small size, micro sample volume, easy operation, rapid detection and low cost.
The limit concentration of Verapamil solution for stable detection in the system is 10 ng/mL. A linear dynamic range with a high correlation factor from 10 ng/mL to 100 μg/mL was obtained. For the analysis of serum sample, Verapamil present excellent electrochemical activity at 1 ng/mL. A linear dynamic range with a high correlation factor from 1 ng/mL to 100 μg/mLwas obtained. According to the results, our system for clinical Verapmil concentration analysis has the feasibility of the practical application.
目次 Table of Contents
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 vi
圖目錄 ix
表目錄 x
符號表 xi
縮寫表 xii
壹、緒論 1
1-1 維拉帕米 (Verapamil) 2
1-1.1 Verapamil 臨床治療應用 3
1-1.2 Verapamil 傳統分析方法 6
1-1.2.1 高效能液相層析分析方法 6
1-1.2.2 光譜分析方法 7
1-2 生物檢測晶片 8
1-2.1 奈米組合電極 9
1-2.1.1 奈米組合電極發展背景 9
1-2.1.2 金奈米組合電極 10
1-2.1.3 金奈米組合電極於生物感測應用 11
1-3 電化學分析方法 12
1-3.1 電化學反應概論 12
1-3.2 循環伏安法 13
1-4 臭氧 16
貳、研究動機與目標 18
參、研究材料與方法 21
3-1 金奈米電極製造 21
3-2 金奈米組合電極電化學微晶片設計 24
3-3 金奈米組合電極電化學微晶片製程和組合 25
3-4 電化學量測架構 27
3-5 Verapamil 樣本溶液配製 28
3-6 Verapamil 血清樣本配製 29
3-7 臭氧前處理 30
3-8 光譜分析 31
3-9 質譜分析 31
3-10 循環伏安法分析 31
3-11 Verapamil血清樣本萃取方法 32
3-12 金奈米組合電極電化學微晶片偵測極限分析 33
肆、結果 34
4-1 金奈米組合電極 34
4-2 金奈米組合電極電化學微晶片 35
4-3 金平面電極與奈米金電極量測比較 36
4-4 金奈米組合電極電化學微晶片分析穩定度 38
4-5 以金奈米組合電極電化學微晶片分析 Verapamil 40
4-6 Verapamil經臭氧處理前後之分析比較 41
4-7 最佳臭氧處理時間分析 45
4-8 VPL/O3 水溶液偵測極限分析 48
4-9 血清中 Verapamil 分析 51
伍、討論 55
陸、未來展望 60
柒、參考文獻 61
參考文獻 References
Amatore C, Saveant JM, Tessier D. Charge-Transfer at Partially Blocked Surfaces - a Model for the Case of Microscopic Active and Inactive Sites. J Electroanal Chem1983;147:39-51.
Angnes L, Richter EM, Augelli MA, Kume GH. Gold electrodes from recordable CDs. Anal Chem 2000;72:5503-5506.
Baker WS, Crooks RM. Independent geometrical and electrochemical characterization of arrays of nanometer-scale electrodes. J Phys Chem B 1998;102:10041-10046.
Beck E, Sieber WJ, Trejo R. Management of cluster headache. Am Fam Physician 2005; 71:717-724.
Bontempelli G, Dossi N, Susmel S, Toniolo R, Pizzariello A. Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring. Electrophoresis 2009;30:3465-3471.
Bronstein AC SD, Cantilena LR Jr, Green JL, Rumack BH GS. 2008 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 26th Annual Report. Clin Toxicol (Phila) 2009;47: 911-1084.
Bryant B, Knights K. Pharmacology for Health Professionals 2010;3rd:156-164.
Cheng IF, Whiteley LD, Martin CR. Ultramicroelectrode Ensembles - Comparison of Experimental and Theoretical Responses and Evaluation of Electroanalytical Detection Limits, Anal Chem 1989;61:762-766.
Cheng WL, Dong SJ, Wang EK. Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 2002;74:3599-3604.
Chytil L, Strauch B, Cvacka J, Maresova V, Widimsky J, Holaj R, Slanar O. Determination of doxazosin and verapamil in human serum by fast LC-MS/MS: Application to document non-compliance of patients. J Chromatogr B 2010;878: 3167-3173.
Conyers JL, White HS. Electrochemical characterization of electrodes with submicrometer dimensions. Anal Chem 2000;72:4441-4446.
Criegee R. Ozone. Chem Ztg1975; 99:138-141.
De Klerk OL, Willemsen ATM, Bosker FJ, Bartels AL, Hendrikse NH, Den Boer JA, Dierckx RA. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia: A PET study with [C-11]verapamil as a probe for P-glycoprotein function. Psychiat Res-Neuroim 2010;183:151-156.
Delvaux M, Demoustier-Champagne S, Walcarius A. Flow injection amperometric detection at enzyme-modified gold nanoelectrodes. Electroanal 2004;16: 190-198.
Delvaux M, Walcarius A, Demoustier-Champagne S. Electrocatalytic H2O2 amperometric detection using gold nanotube electrode ensembles. Anal Chim Acta 2004;525:221-230.
ElGhany MFA, Moustafa AA, Elzeany BE, Stewart JT. High performance thin-layer chromatographic analysis of verapamil hydrochloride in drug substance and dosage forms. Jpc-J Planar Chromat 1996;9:388-390.
Esteve-Romero JS, Rambla-Alegre M, Gil-Agusti MT, Capella-Peiro ME, Carda-Broch S. Direct determination of verapamil in urine and serum samples by micellar liquid chromatography and fluorescence detection. J Chromatogr B 2006;839: 89-94.
Geletneky C, Berger S. The mechanism of ozonolysis revisited by O-17-NMR spectroscopy. Eur J Org Chem 1998:1625-1627.
Gupta SK, Hwang S, Atkinson L, Longstreth J. Simultaneous first-order and capacity-limited elimination kinetics after oral administration of verapamil. J Clin Pharmacol 1996;36:25-34.
Harrison DJ, Fluri K, Seiler K, Fan ZH, Effenhauser CS, Manz A. Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical-Analysis System on a Chip. Science1993;261:895-897.
Harrison DJ, Manz A, Fan ZH, Ludi H, Widmer HM. Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Anal Chem 1992; 64:1926-1932.
Hassanzadeh S, Omidvari M, Hosseinibalam F. Time series analysis of ozone data in Isfahan. Physica A 2008;387:4393-4403.
Holtje HD. Theoretical Investigation of Structure-Activity-Relationships for Ring Substituted Verapamil Derivatives. Arch Pharm 1982;315:317-323.
Hsia TH, Liao KT, Huang HJ. Flow analysis of p-aminophenyl phosphate with a gold nanoelectrode ensemble based detector. Anal Chim Acta 2005;537:315-319.
Hulteen JC, Menon VP, Martin CR. Template preparation of nanoelectrode ensembles - Achieving the 'pure-radial' electrochemical-response limiting case. J Chem Soc Faraday T 1996;92:4029-4032.
Jacobson SC, Hergenroder R, Koutny LB, Ramsey JM. High-Speed Separations on a Microchip. Anal Chem 1994;66:1114-1118.
Janicak PG, Sharma RP, Pandey G, Davis JM. Verapamil for the treatment of acute mania: A double-blind, placebo-controlled trial. Am J Psychiat 1998;155: 972-973.
Jeoung E, Galow TH, Schotter J, Bal M, Ursache A, Tuominen MT, Stafford CM, Russell TP, Rotello VM. Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly. Langmuir 2001;17: 6396-6398.
John DN, Fort S, Lewis MJ, Luscombe DK. Pharmacokinetics and Pharmacodynamics of Verapamil Following Sublingual and Oral-Administration to Healthy-Volunteers. Brit J Clin Pharmaco 1992;33:623-627.
Koppang MD, Williams CK. Selective analysis of secondary amines using liquid chromatography with electrochemical detection (LC-EC). Electroanal 2006;18: 2121-2127.
Kirsten R, Nelson K, Kirsten D, Heintz B. Clinical pharmacokinetics of vasodilators - Part I. Clin Pharmacokinet 1998; 34:457-482.
Leblanc R, Feindel W, Yamamoto L, Milton JG, Frojmovic MM. Reversal of Acute Experimental Cerebral Vasospasm by Calcium Antagonism with Verapamil. Can J Neurol Sci 1984;11:42-47.
Liao KT, Chen CM, Huang HJ, Lin CH. Poly (methyl methacrylate) microchip device integrated with gold nanoelectrode ensemble for in-column biochemical reaction and electrochemical detection. J Chromatogr A 2007;1165:213-218.
Lindsay S. High Liquid Chromatography.1992;2nd edition.
Fuzhen Lv, Zhang CD, Zhou L, Li XY, Wu XX, Hoffman RM. Effect of Verapamil on the Expression of EGFR and NM23 in A549 Human Lung Cancer Cells. Anticancer Res 2009;29:27-32.
Martin CR. Membrane-based synthesis of nanomaterials. Chem Mater 1996;8: 1739-1746.
Megarbane B, Karyo S, Abidi K, Delhotal-Landes B, Aout M, Sauder P, Baud FJ. Predictors of Mortality in Verapamil Overdose: Usefulness of Serum Verapamil Concentrations. Clin Toxicol 2011;49:244-245.
Menon VP, Martin CR. Fabrication and Evaluation of Nanoelectrode Ensembles. Anal Chem 1995;67:1920-1928.
Moretto LM, Pepe N, Ugo P. Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles. Talanta 2004;62:1055-1060.
Rahman N NAk, Hejaz Azmi SN. Optimized and Validated Spectrophotometric Methods for the Determination of Verapamil Hydrochloride in Drug Formulations. ScienceAsia 2005; 31:341-348.
Ozkan Y, Yilmaz N, Ozkan SA, Biryol I. High-performance liquid chromatographic analysis of verapamil and its application to determination in tablet dosage forms and to drug dissolution studies. Farmaco 2000;55:376-382.
Pereira FC, Moretto LM, De Leo M, Zanoni MVB, Ugo P. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Anal Chim Acta 2006;575: 16-24.
Rahman N, Hoda MN. Spectrophotometric determination of verapamil hydrochloride in drug formulations with chloramine-T as oxidant. Anal Bioanal Chem 2002;374: 484-489.
Rice RG. Applications of ozone for industrial wastewater treatment - A review. Ozone-Sci Eng 1997;18:477-515.
Rosseel MT, Belpaire FM. Determination of the Calcium Entry Blocker Verapamil in Plasma by Capillary Gas-Chromatography with on-Column Injection. J High Res Chromatog 1988;11:103-106.
Rybalchenko V, Prevarskaya N, Van Coppenolle F, Legrand G, Lemonnier L, Le Bourhis X, Skryma R. Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating. Mol Pharmacol 2001;59: 1376-1387.
Sabatani E, Rubinstein I, Maoz R, Sagiv J. Organized Self-Assembling Monolayers on Electrodes .1. Octadecyl Derivatives on Gold. J Electroanal Chem 1987;219: 365-371.
Schwartz C, Raible J, Mott K, Dussault PH. Fragmentation of carbonyl oxides by N-oxides: An improved approach to alkene ozonolysis. Org Lett 2006;8: 3199-3201.
Shukla UA, Stetson PL, Ensminger WD. Rapid Gas-Liquid-Chromatographic Method for Plasma Verapamil Level Determination. J Chromatogr 1985;342:406-410.
Stjohn DS, Bailey SP, Fellner WH, Minor JM, Snee RD. Time-Series Analysis of Stratospheric Ozone. Commun Stat a-Theor 1982;11:1293-1333.
Sun L, Crooks RM. Fabrication and characterization of single pores for modeling mass transport across porous membranes. Langmuir 1999;15:738-741.
Szunerits S, Walt DR. Fabrication of an optoelectrochemical microring array. Anal Chem 2002;74:1718-1723.
Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of Vincristine Resistance in P388 Leukemia Invivo and Invitro through Enhanced Cyto-Toxicity of Vincristine and Vinblastine by Verapamil. Cancer Res 1981;41:1967-1972.
Ugo P, Moretto LM, Bellomi S, Menon VP, Martin CR. Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles. Anal Chem 1996;68:4160-4165.
Valvo L, Alimenti R, Alimonti S, Raimondi S, Foglietta F, Campana F. Development and validation of a liquid chromatographic method for the determination of related substances in verapamil hydrochloride. J Pharmaceut Biomed 1997;15: 989-996.
Westerhoff P, Song R, Amy G, Minear R. Applications of ozone decomposition models. Ozone-Sci Eng 1997;19:55-73.
Wintersteiger R, Barary MH, Elyazbi FA, Sabry SM, Wahbi AAM. Reversed Phase-Liquid Chromatography of Primary and Secondary Aliphatic-Amines after Derivatization Combined with Electrochemical Detection. Anal Chim Acta 1995;306:273-283.
Yang YH, Lu XX, Bai HP, Ruan Q, Yang MH, Yang GM, Tan L. Direct determination of pesticides in vegetable samples using gold nanoelectrode ensembles. Int J Environ an Ch 2008;88:813-824.
胡啟章. 電化學原理與方法 Fundamentals and Methods of Electrochemistry. 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.82.23
論文開放下載的時間是 校外不公開

Your IP address is 3.139.82.23
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code