Responsive image
博碩士論文 etd-0811111-161216 詳細資訊
Title page for etd-0811111-161216
論文名稱
Title
液相沉積法備製摻雜鎳之高介電氧化鈦薄膜
High Dielectric Constant Nickel-doped Titanium Oxide Films by Liquid Phase Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
112
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-22
繳交日期
Date of Submission
2011-08-11
關鍵字
Keywords
MOS 結構、高介電常數、液相沉積法、二氧化鈦、鎳摻雜
MOS structure, Titanium dioxide, liquid phase deposition, high dielectric constant, Nickel-doped
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
在此實驗中,我們將研究鎳摻雜二氧化鈦薄膜在矽基板上的特性。我們會進行未摻雜與摻雜的二氧化鈦薄膜之物理特性、化學特性和電特性方面的量測與討論。 物理特性方面,由場放射掃描電子顯微鏡和X光繞射來看薄膜的厚度和結構。化學特性部分,由X射線光電子光譜學和傅立葉轉換紅外光譜儀來看薄膜的化學組成比和化學鍵結。電特性部份,由電壓-電流特性圖與電容-電壓特性圖來看薄膜的漏電流與電容值。為了改善電特性,我們將進行鎳摻雜二氧化鈦薄膜之氧氣、氮氣和笑氣下回火處理的研究。
為了進行摻雜,我們選用氯化鎳當做實驗中的摻雜溶液,以改善電特性方面。在700度中通笑氣回火處理下,未摻雜的二氧化鈦薄膜之介電常數為29;摻雜後的二氧化鈦薄膜之介電常數提升到94。
Abstract
In this study, the characteristics of Nickel-doped LPD-TiO2 films on silicon substrate were investigated. In our experiment, we do some measurement about physical, chemical and electrical properties for undoped and Nickel-doped LPD-TiO2 films and discussed with them. The TiO2 film thickness was characterized by field emission scanning electron microscopy ( FE-SEM ), structure was characterized by X-ray diffraction (XRD), chemical properties was characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and electrical properties was characterized by leakage current: current-voltage (B1500A) and dielectric constant: capacitance-voltage (4980A). For the electrical property improvements, we investigated the Ni-doped LPD-TiO2 films by the post-anneal treatments in nitrogen, oxygen and nitrous oxide ambient.
For nickel doping, the nickel chloride was used as the doping solution and the electrical characteristics were improved. After thermal annealing in nitrous oxide at 700 oC, the dielectric constant of polycrystalline titanium oxide film is 29 and can be improved to 94 with nickel doping.
目次 Table of Contents
論文審定書.....................................................................................................................i
ACKNOWLEDGEMENT ii
摘 要 iii
ABSTRACT iv
CONTNETS v
LIST OF FIGURES viii
LIST OF TABLE xi
Chapter 1 1
Introduction 1
1-1 Developments in Gate Dielectric 1
1-2 Properties of TiO2 3
1-3 Comparison of Deposition Methods of TiO2 4
1-4 Advantages of Liquid Phase Deposition 5
1-5 Motivation of Doping Nickel 6
Chapter 2 12
Experiments 12
2-1 Deposition System 12
2-2 Cleaning of Substrate 13
2.3 Aluminum Metal Cleaning Processes 14
2-4 Preparation of Deposition Solution 14
(A) Preparation of (NH4)2TiF6 solution 15
(B) Preparation of boric acid solution 15
(C) Preparation of Nickel chloride solution 15
(D) Preparation of SiO2 saturated H2SiF6 solution 15
2-5 Film Deposition 16
2-5.1 LPD-TiO2 process 16
2-5.2 Ni-doped LPD-TiO2 process 16
2-5.3 SiO2 layer Process 17
2-6 Growth Mechanisms of LPD-TiO2 Films 18
2.7 Mechanisms of LPD-SiO2 Films 19
2-8 Improvements of Electrical Properties by Nickel Doping 20
2-9 Characteristics 20
2-9.1 Physical and Chemical Properties 21
(a) Thickness and Cross-Sectional Morphologies 21
(b) Surface Morphologies 21
(c) Structure 21
(d) Composition 21
2-9.2 Electrical Properties 22
(a) Structure for Electrical Measurement 22
(b) Current-Voltage (I-V) Measurement 22
(c) Capacitance-Voltage Measurement 23
Chapter 3 29
Results and Discussion 29
3-1 Undoped and Ni-doped LPD-TiO2 Film at 40 oC on Si Substrate 29
3-1.1 Deposition Rate of LPD-TiO2 Films as a Function of Deposition Time 30
3-1.2 Deposition Rate of Ni-doped LPD-TiO2 Films as a Function of Deposition Time 30
3-2 XRD Patterns of Undoped and Ni-doped LPD-TiO2 Films by Thermal Treatment 31
3-2.1 X-ray Diffraction Spectra of LPD-TiO2 Films by N2O Annealing 31
3-2.2 X-ray Diffraction Spectra of LPD-TiO2 Films by O2 Annealing 31
3-2.3 X-ray Diffraction Spectra of LPD-TiO2 Films by N2 Annealing 32
3-2.4 X-ray Diffraction Spectra of Ni-doped LPD-TiO2 Films by N2O Annealing 32
3-2.5 X-ray Diffraction Spectra of Ni-doped LPD-TiO2 Films by O2 Annealing 33
3-2.6 X-ray Diffraction Spectra of Ni-doped LPD-TiO2 Films by N2 Annealing 34
3-3 FTIR Spectra of Undoped and Ni-doped LPD-TiO2 Films by Thermal Treatment 34
3-3.1 FTIR Spectra of Undoped LPD-TiO2 Films by N2O Annealing 34
3-3.2 FTIR Spectra of Undoped LPD-TiO2 Films by O2 Annealing 35
3-3.3 FTIR Spectra of Undoped LPD-TiO2 Films by N2 Annealing 36
3-3.4 FTIR Spectra of Ni-doped LPD-TiO2 Films by N2O Annealing 36
3-3.5 FTIR Spectra of Ni-doped LPD-TiO2 Films by O2 Annealing 37
3-3.6 FTIR Spectra of Ni-doped LPD-TiO2 Films by N2 Annealing 37
3-4 ESCA Analysis of Ni-doped LPD-TiO2 Films 38
3-5 Electrical Characteristics of LPD-TiO2 Films by Thermal Treatment 38
3-5.1 Electrical Characteristics of LPD-TiO2 Films by N2O Annealing 38
3-5.2 Electrical Characteristics of LPD-TiO2 Films by O2 Annealing 40
3-5.3 Electrical Characteristics of LPD-TiO2 Films by N2 Annealing 41
3-6 Electrical Characteristics of Nickel-doped LPD-TiO2 Films Prepared by Thermal Treatment 42
3-6.1 Electrical Characteristics of Nickel-doped LPD-TiO2 Films by N2O Annealing 42
3-6.2 Electrical Characteristics of Nickel-doped LPD-TiO2 Films by O2 Annealing 43
3-6.3 Electrical Characteristics of Nickel-doped LPD-TiO2 Films by N2 Annealing 45
3-7 Various NiCl2 Volumes of Nickel-doped LPD-TiO2 Film at 40oC on Si Substrate 46
3-7.1 The Thickness of Ni-doped TiO2 Films on Si substrate as a function of Various NiCl2 Volumes 46
3-7.2 Electrical Characteristics of Various NiCl2 Volumes Ni-doped TiO2 Films Annealed at 700 oC in N2O Ambient 46
3-8 Improvement of J-E Characteristics of Ni-doped LPD-TiO2 on Si with a SiO2 Layer 47
Chapter 4 89
Conclusions 89
References 90
Chapter 1 90
Chapter 2 98
Chapter 3 99


參考文獻 References
References
Chapter 1
[1] http://www.intel.com/technology/mooreslaw/
[2] R. Paily, A. DasGupta, N. DasGupta, P. Bhattacharya, P. Misra, T. Ganguli, L. Kukreja, A. K. Balamurugan, S. Rajagopalan, A. K. Tyagi, “Pulsed laser deposition of TiO2 for MOS gate dielectric, “Applied Surface Science, 187, p. 297, 2002.
[3] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, p 5243, 2001.
[4] J. J. Sullivan, and B. Han, “Metalorganic chemical vapor deposition of titanium oxide for microelectronics applications,” J. Mater. Res., 16, pp. 1838-1849, 2001.
[5]
[6] G.D. Wilk, R.M. Wallace, and J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., 89, pp.5243, 2001.
[7] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217, 2002.
[8] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., 13, pp. 596-601, 1995.
[9] G. V. Samsonov, The Oxide Handbook. New York: IFI/Plenum, pp. 316, 1973.
[10] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., B14, pp. 1706-1711, 1996.
[11] M. A. Butler, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., 15, pp. 1-19, 1980.
[12] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., 90, pp. 5896-5900, 1986.
[13] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-films with graded refractive-index profiles,” J. Jpn. Inst. Metals, 62, pp. 1069-1074, 1998.
[14] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., 72, pp. 3264-3266, 1998.
[15] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-films by PECVD for antireflection coating,” J. Non-Cryst. Solids, 216, pp. 77-82, 1997.
[16] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent,” Chem. Commun., pp. 569-570, 2001.
[17] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides,” Thin Solid Films, 323, pp. 59-62, 1998.
[18] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-films with grating coupling,” J. Raman Spectrosc., 27, pp. 897-900, 1996.
[19] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite,” Phys. Rev. B, 51, pp. 13023-13032, 1995.
[20] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties,” Appl. Phys. A, 73, pp. 595-600, 2001.
[21] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., 95, pp. 735-758, 1995.
[22] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-films,” J. Appl. Phys., 75, pp. 2042-2047, 1994.
[23] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, 15, pp. 3229-3235, 1977.
[24] G. S. Brady, and H. R. Clauser, Materials Handbook, 13th ed. New York: McGraw-Hill, 1991.
[25] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodes by electrolyte electroreflection,” J. Electroanalytical Chem., 428, pp. 25-32, 1997.
[26] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Films, 424, pp.224-228, 2003.
[27] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, Fig. 4258, 1998.
[28] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, 32, pp. 461-465, 1989.
[29] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., 48, p. 391, 1965.
[30] R. S. Sonawane, S. G. Hegde and M. K. Dongare, “Preparation of Titanium (IV) Oxide Thin-Film Photocatalyst by Sol-Gel Dop Coating, ”Mater. Chem. Phy., 77, pp. 744-750, 2003.
[31] O. Harizanov and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coating,” Sol. Energy Mater. Sol. Cells, 63, pp. 185-195, 2000.
[32] R. A. Zoppi, B. C. Trasferetti and C. U. Davanzo. “Sol-Gel titanium dioxide thin films on platinum substrates: preparation and characteristization,” J. Electroanal. Chem., 544, pp. 47-57, 2003.
[33] G. Sanvicentr, A. Morales and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, 391, , pp. 133-137, 2001.
[34] C. Grazella, E. Comini, E. Tempesti, C. Frigeri and G. Sberveglieri, “TiO2 thin films by a novel sol-gel processing for gas sensor applications,” Sens. Actuators B, 68, pp. 189-196, 2000.
[35] S. C. Chiao, B. G. Bovard and H. A. Macleod, “Repeatability of the Composition of Titanium Oxide Films Produced by Evaporation of Ti2O3,” Appl. Opt., 37, pp.5284-5290, 1998.
[36] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, B. Samsetc,” Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, 371, pp. 218-224, 2000.
[37] S. G. Springer, P. E. Schmid, R. Sanjines and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., 151, pp. 51-54, 2002.
[38] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputterd on unheated substrate,” Surf. Coat. Technol., 153, pp. 93-99, 2002.
[39] T. M. Wang, S. K. Zheng, W. Hao and C. Wang, “Studies on photocatalytic Activity and Transmittance Spectra of TiO2 Thin-Films Prepared by R.F. Magnetron Sputtering Method,” Surf. Coat. Technol., 155, pp.141-145, 2002.
[40] C. Martinet, V. Paillard, A. Gagnaire and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhance chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, 216, pp. 77-82, 1997.
[41] G. A. Battiston , R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi-GA, “ PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, 371, pp. 126-131, 2000.
[42] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGS and Demoraes-MAB, “ Properties of Titanium-Oxide Films Obtained by PECVD,” Surf. Coat. Technol., 126, pp. 123-130,2000.
[43] S. S. Huang and J. S. Chen, “Comparison of the Characteristics of TiO2 Films Prepared by Low-Pressure and Plasma-Enhanced Chemical-Vapor-Deposition,” J. Mater. Sci.: Mater. Electron. 13, pp. 77-81, 2002.
[44] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita and H. “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,” Thin Solid Films, 401, pp. 88-93, 2001.
[45] D. G. Syarif, A. Miyashita, T. Tamaki, T. Sumita, Y. Choi and H. Itoh, “Prepartion of Anatase and Rutile Thin Films by Controlling Oxygen Partial-Prsssure,” Appl. Surf. Sci., 187, pp. 297-304, 2002.
[46] R. Paily, A. Dasgupta, N. Dasugpta, P. Bhattacharya, P. Misra, T. Ganguil, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan and A. K. Tyagi, “Pulsed-Laser Deposition of TiO2 for MOS GateDielectric,” Appl. Surf. Sci., 187, pp. 297-304, 2002.
[47] C. K. Ong and S. J. Wang,” In-Situ RHEED Monitor of the Growth of Epitaxial Anatase TiO2 Thin Films,” Appl. Surf. Sci., 185, pp. 47-51, 2001.
[48] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-Type TiO2 Thin Films Produced by Lattice Deformation, “Jpn. J. Appl. Phys., Part 1, 36, pp. 7358-7359, 1997.
[49] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa and M. Persin, “ Raman-Spectroscopy of thermally annealed TiO2 thin films,” Thin Solid Films, 198, pp. 199-205, 1991.
[50] D. H. Lee, Y. S. Cho, W. I. Yi. T. S. Kim, J. K. Lee and H. J. Jung, “Metalorganic Chemical Vapor Deposition of TiO2-N anatase Thin Films on Si Substrate,” Appl. Phys. Lett., 66, pp. 815-821, 1995.
[51] M. K. Lee, J. J. Huang, C. M. Shih and C. C. Cheng,” Properties of TiO2 Thin Films on Inp Substrate Prepared by Liquid-Phase Deposition,” Jpn. J. Appl. Phys., Part 1, 41, pp. 4689-4690, 2002.
[52] M. K. Lee and B. H. Lei, “ Characterization of Titanium Oxide Films Prepared by Liquid-Phase Deposition Using Hexafluorotitanic Acid,” Jpn. J. Appl. Phys., Part 2, 39, pp. L101-L 103, 2000.
[53] X. P. Wang, Y. Yu, X. F. Hu and L. Gao, “Hydrophilicity of TiO2 Films Prepared by Liquid Phase Deposition,” Thin Solid Films, 371, pp. 148-152, 2000.
[54] Shih-Chang Fang, “Study of Niobium Doped TiO2 Films Prepared by Liquid Phase Deposition,” 2005
[55] H. Nagayama, H. Honda, and H. Kamahara, “A New Process for Silica Coating,” J. Electrochem. Soc., 135, pp. 2013-2016, 1988.
[56] Shu-Ming Chang, “The Electrical Properties of Liquid-Phase Deposited SiOF Films with Annealing Treatment”, 2003.
[57] A. Hishinuma, T. Goda, M. Kitaoka, S. Hayashi, and H. Kawahara,“ Formation of Silicon Dioxide Films in Acidic Solution,” Applied Surface Sci., 48, pp. 405-408, 1991.
[58] C. F. Yeh and C. L. Chen, “Bond-Structure Changes of Liquid-Phase Deposited Oxide (SiO2-xFx) on N2 Annealing,” Appl. Phys. Lett., 66, pp. 938-940, 1995.
[59] Craig A. J. Fisher, Veluz M. H. Prieto, and M. S. Islam, "Lithium Battery Materials LiMPO4 (M ) Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior," Chem. Mater., 20, pp. 5907-5915, 2008.
[60] K. S. Hwang, J. H. Jeong, J. H. Ahn, B. H. Kim, Ceramics International, 32, pp.935, 2006.

Chapter 2
[1] Y. Gao, Y. Masuda, K. Koumoto “Microstructure-controlled deposition of SrTiO3 thin film on self-assembled monolayers in an aqueous solution of (NH4)2TiF6-Sr(NO3)2-H3BO3”, Chem. Mater, 15, pp. 2399-2410, 2003.
[2] Y. Gao, Masuda. Y, T. Yonezawa. T, K. Koumoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled Mmonolayers by the liqid phase deposition mothod ”,Chem. Mater, 14, pp. 5006-5014, 2002.
[3] C. A. Wamser, “Equilibria in system Boron Trifuoride” J. Am. Chem. Soc , 73, pp. 409, 1951
[4] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., 135, pp.2013, 1989.
[5] A. Stabel, A. Caballero, J.P. Espinos, F. Yubero, A. Justo, A.R. Gonzalez-Elipe, Surf. Coat. Technol. 101, pp.142, 1998.
[6] K. S. Hwang, J. H. Jeong, J. H. Ahn, B. H. Kim, “ Hydrophilic/hydrophobic conversion of Ni-doped TiO2 thin films on glass substrates,” Ceramics International, 32, pp935 , 2006.
[7] S. Riyas, V.A. Yasir, P.N.M. Das, Bull. Mater. Sci., 25, pp.267, 2002.

Chapter 3
[1] J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, and F. Honggang, J. Phys. Chem. Solids, 64, pp.615, 2003.
[2] P. M. Kumar, S. Badrinarayanan, M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, 358, pp.122, 2000.
[3] N. H. Hong, J. Sakai, and W. Prellier, Journal of Magnetism and Magnetic Materials, 281, pp.347, 2004.
[4] K. S. Hwang, J. H. Jeong, J. H. Ahn, B. H. Kim, Ceramics International, 32, pp.935, 2006.
[5] Y. Wang, and L. Zhang, Journal of Physical Chemistry C, 113, pp.9210, 2009.
[6] Q. Fang, M. Meier, J.J. Yu, Z.M. Wang, J.-Y. Zhang, J.X. Wu, A. Kenyon, P. Hoffmann, Ian W. Boyd, “ FTIR and XPS investigation of Er-doped SiO2–TiO2 films, “Materials Science and Engineering, B105, pp.209, 2003.
[7] Hernandez-Padron G, Rojas F, Garcia-Garduno M, Canseco MA, Castano VM. Mater Sci Eng A; 355, pp.338, 2003.
[8] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura, and T. Nabatame, Thin Solid Films, 424, pp.224, 2003.
[9] C.H. Ao, S.C. Lee, Appl. Catal. B: Environ, 44, pp191, 2003.
[10] G. Zhao, Q. Tian, Q. Liu, G. Han, “Effects of HPC on the microstructure and hydrophilicity of sol–gel-derived TiO2 films, “Surface & Coatings Technology, 198, pp.55, 2005.
[11] Y. K. Sharma, M. Kharkwal, S. Uma, R. Nagarajan, "Synthesis and characterization of titanates of the formula MTiO3 (M = Mn, Fe, Co, Ni and Cd) by co-precipitation of mixed metal oxalates," Polyhedron, 28, 579–585, 2009.
[12] P. Kofstad, Oxidation of Metals, 44, pp.3, 1995.
[13] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Mainamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jap. J. Appl. Phys., 39, pp.5794-5799, 2000.
[14] X. H. Xu, M. Wamg, Y. Hou, S. R. Zhao, H.Wang, D. Wang, S. X. Shang. “Effect of Thermal Annealing on Structural Properties, morphologies and Electrical properties of TiO2 thin film Grown by MOCVD” Cryst. Res. Technol, 37, pp.431-439, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.185.170
論文開放下載的時間是 校外不公開

Your IP address is 3.140.185.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code