Responsive image
博碩士論文 etd-0811112-113851 詳細資訊
Title page for etd-0811112-113851
論文名稱
Title
聚丁二酸二丁酯及含少量2-甲基-1,3-丁二酸二丙酯之共聚酯的非等溫結晶與熱裂解行為
Nonisothermal Crystallization and Thermal Degradation Behaviors of Poly(butylene succinate) and its Copolyesters with Minor Amounts of 2-methyl-1,3-Propylene Succinate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
172
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-23
繳交日期
Date of Submission
2012-08-11
關鍵字
Keywords
結晶、非等溫、共聚酯、聚酯、動力學、熱裂解、裂解機制
polyesters, copolyesters, nonisothermal, crystallization, kinetics, thermal degradation, degradation mechanism
統計
Statistics
本論文已被瀏覽 5732 次,被下載 349
The thesis/dissertation has been browsed 5732 times, has been downloaded 349 times.
中文摘要
聚丁二酸二丁酯 (PBSu)、聚2-甲基-1,3-丁二酸二丙酯 (PMPSu)及其兩種新的共聚酯材料poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s (PBMPSu 95/05 and PBMPSu 90/10)經由兩階段酯化反應製備而成。由1H NMR核磁共振分析儀光譜鑑定出此兩種共聚酯之2-methyl-1,3-propylene succinate (MPS)含量分別為6.5及 10.8 mol%,另並由13C NMR光譜鑑定出此兩種共聚酯為無序排列。本研究利用不同方法探討這些聚酯之非等溫結晶及熱裂解行為,以示差掃描熱量計(DSC)與偏光顯微鏡(PLM)分別在不同降溫速率條件下,研究PBSu及PBMPSu共聚物之非等溫結晶行為,觀察球晶的結晶型態變化及藉由曲線模擬獲得球晶的成長速度,並利用Lauritzen−Hoffman方程式分析區型(regime)轉移溫度,結果得到PBSu、PBMPSu 95/05及PBMPSu 90/10的regime II轉移至regime III 溫度依次為96.2、83.5、77.9 °C。從DSC五種降溫速率之放熱曲線顯示這三種聚酯的非等溫結晶幾乎都發生在regime III。利用modified Avrami、Ozawa、Mo、Friedman 和 Vyazovkin方程式分析DSC數據,所有DSC及PLM分析結果顯示,加入少量的MPS明顯抑制PBSu的結晶。也利用衰減全反射傅立葉轉換紅外線光譜儀(ATR-FTIR)做非等溫結晶行為之探討,發現紅外光譜在918、955、1045 cm-1出現結晶吸收峰。當這些半結晶性聚酯從熔融態開始熔化時,PBSu及其共聚物結晶之紅外線特徵吸收峰,就已經被偵測出。
本研究並利用熱重分析儀連接傅立葉轉換紅外線光譜儀 (TGA-FTIR)及熱裂解氣相層析質譜儀(Py-GC-MS),探討這些聚酯之熱裂解機制。共聚酯之熱裂解氣體產物經鑑別有酸酐、醚、酯、醇、烯、醛及二氧化碳。經由紅外光譜分析,熱裂解主要產物為酸酐 (anhydride)。此外,透過紅外光譜分析發現共聚酯在裂解溫度低於403°C時,其熱裂解機制與PBSu相同,高於403°C時,其熱裂解機制與PMPSu相同,顯示隨著裂解溫度的升高,MPS在裂解過程中的影響逐漸變大。研究結果顯示,共聚酯(在較低溫度)及PBSu的裂解機制主要依循β氫鍵斷裂機制(β-hydrogen bond scission)及末端基攻擊(back-biting)機制;而共聚酯(在較高溫度)及PMPSu的裂解機制主要依循β氫鍵斷裂機制,其次再依α氫鍵斷裂機制進行。
最後利用TGA在氮氣環境下以1、3、5、10°C/min升溫,探討聚酯之熱裂解動力學及熱穩定性。應用Friedman 及Ozawa此兩種方法,探討在不同熱重損失率下之熱裂解活化能,結果顯示添加少量MPS稍微減少聚酯的熱穩定性。使用兩種Model-fitting方法決定重量損失函數f(α)、活化能及其相關裂解參數。結果顯示自催化級數 (autocatalysis nth-order) 反應機制函數比級數(nth-order)反應機制函數更符合實驗結果。
Abstract
Poly(butylene succinate) (PBSu), poly(2-methyl-1,3-propylene succinate) (PMPSu), and their two novel poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s (PBMPSu 95/05 and PBMPSu 90/10) were synthesized by a two-stage esterification reaction. PBMPSu 95/05 and PBMPSu 90/10 were characterized as having 6.5 and 10.8 mol% 2-methyl-1,3-propylene succinate (MPS) units, respectively, by 1H NMR. These copolymers were characterized to be random from the 13C NMR spectra. In this study, the nonisothermal crystallization and thermal degradation behaviors of the polyesters were investigated via different approaches. A differential scanning calorimeter (DSC) and a polarized light microscope (PLM) were employed to investigate the nonisothermal crystallization of these copolyesters and neat PBSu. Morphology and the isothermal growth rates of spherulites under PLM experiments at three cooling rates of 1, 2.5 and 5 °C/min were monitored and obtained by curve-fitting. These continuous rate data were analyzed with the Lauritzen-Hoffman equation. A transition of regime II → III was found at 96.2, 83.5, and 77.9 °C for PBSu, PBMPSu 95/05, and PBMPSu 90/10, respectively. DSC exothermic curves at five cooling rates of 1, 2.5, 5, 10 and 20 °C/min show that almost all of the nonisothermal crystallization occurred in regime III. DSC data were analyzed using modified Avrami, Tobin, Ozawa, Mo, Friedman and Vyazovkin equations. All the results of PLM and DSC measurements reveal that incorporation of minor MPS units into PBSu markedly inhibits the crystallization of the resulting polymer. The nonisothermal crystallization behavior of these polyesters was also investigated using a Fourier-transform infrared spectrometer (FTIR) with an attenuated total reflection (ATR). The absorbance peaks of crystals for the α form (918, 955, and 1045 cm-1) of PBSu and PBMPSu copolyesters were observed by ATR-FTIR under nonisothermal crystallization. When these semicrystalline polyesters started to be solidified from the melt state, these characteristic absorption bands for PBSu and its copolyesters crystals have been detected.
In this study, the thermal degradation mechanisms of PBSu, PMPSu, PBMPSu 95/05, and PBMPSu 90/10 were investigated using a thermogravimetric analyzer combined Fourier-transform infrared spectrometer (TGA-FTIR) and a pyrolysis-gas chromatography–mass spectrometry (Py-GC-MS). The volatile products evolved from the thermal degradation of these two copolyesters were identified to be anhydride, ether, ester, alcohol, alkene, aldehyde, and CO2. FTIR spectra displayed that the main degradation products for these four polymers were anhydrides. Moreover, PBSu-rich PBMPSu copolymers exhibited the same thermal degradation mechanism as that of PBSu at lower thermal degradation temperatures (< 403 &#186;C) and as that of PMPSu at higher thermal degradation temperatures (> 403 &#186;C) by the TGA-FTIR analysis. The results of the TGA-FTIR analysis clearly demonstrates that the influence of MPS units on the thermal degradation process is gradually increased as the temperature increases for PBMPSu copolymers. The degradation mechanism of PBMPSu at lower thermal degradation temperatures and PBSu mainly follows the β-hydrogen bond scission mechanism and the back-biting process from the polymer chains. Moreover, the degradation mechanism of PBMPSu at higher thermal degradation temperatures and PMPSu occurred mainly through the β-hydrogen bond scission and secondarily through α-hydrogen bond scission.
Finally, the thermal stability and degradation kinetics of these polyesters were investigated using a TGA at heating rates of 1, 3, 5, and 10 &#186;C/min under dynamic nitrogen. The activation energies of thermal degradation in elective conversions were estimated using the Friedman and Ozawa methods. The results clearly demonstrated that the thermal stabilities of these PBMPSu copolyesters were slightly reduced with the incorporation of minor MPS units into PBSu. Two model-fitting methods of nth-order and autocatalysis nth-order reaction mechanisms were adopted to determine the mass loss function f(α), the activation energy and the associated degradation parameters. The results revealed that the mechanism of autocatalysis nth-order fitted the experimental data much more closely than did the nth-order mechanism for PBSu, PMPSu and PBMPSu copolymers.
目次 Table of Contents
論文審定書 ii
誌 謝 iii
摘 要 iv
ABSTRACT vi
CONTENTS ix
LIST OF TABLES xi
LIST OF SCHEMES xii
LIST OF FIGURES xiii
CHAPTER 1 INTRODUCTION 1
1.1. Backgrounds 1
1.2. Motivation and objectives 2
1.3. Research approaches 4
CHAPTER 2 LITERATURE REVIEW AND THEORETICAL APPROACHES 6
2.1. Related researches about poly(butylene succinate) and its copolymers 6
2.1.1. Crystallization structure and conformation of poly(butylene succinate) 6
2.1.2. Related researches of nonisothermal crystallization 7
2.1.3. Related researches of thermal degradation behaviors 11
2.2. Theoretical approaches for nonisothermal crystallization kinetics 13
2.2.1. Avrami model 14
2.2.2. Tobin moldel 15
2.2.3. Ozawa model 15
2.2.4. Mo model 16
2.2.5. Determination of growth rates by the non-isothermal method 17
2.2.6. Kinetic analysis of spherulitic growth rates 17
2.2.7. Effective activation energy 18
2.3. Theoretical approaches for thermal degradation kinetics 19
CHAPTER 3 EXPERIMENTAL 21
3.1. Materials and samples preparation 21
3.2. Experimental instruments 22
3.3. Measurements of copolymer compositions using NMR 23
3.4. Measurements of intrinsic viscosity and molecular weights 23
3.5. Measurements of the spherulitic growth rates using PLM 24
3.6. Evaluation of nonisothermal crystallization behavior using DSC 24
3.7. Evaluation of crystallization behavior using ATR-FTIR 25
3.8. Measuring thermal stability by TGA 25
3.9. Measurements of TGA-FTIR 26
3.10. Measurements of Py-GC-MS 26
3.11. Research procedures 27
CHAPTER 4 RESULTS AND DISCUSSION 29
4.1. Analysis of compositions for PBMPSu copolymers 29
4.2. Molecular weights and thermal properties 30
4.3. Spherulitic growth rates and morphologies 31
4.3.1. Determination of the spherulitic growth rates by the nonisothermal method 31
4.3.2. Kinetic analysis of the spherulitic growth rates 31
4.3.3. Morphologies of spherulites for PBSu and PBMPSu copolymers 32
4.4. Nonisothermal crystallization behavior and kinetics 33
4.4.1. Premolten temperature at 190 °C 33
4.4.1.1. Crystallization behavior and kinetics 33
4.4.1.2. Effective activation energy 38
4.4.2. Influence of various premolten temperatures on crystallization behavior 39
4.5. Nonisothermal crystallization behavior by ATR-FTIR 40
4.6. Thermal degradation mechanisms and kinetics 42
4.6.1. FTIR spectra changes during thermal degradation 42
4.6.2. Evolved gas analysis by Py-GC-MS 46
4.6.3. Thermal degradation mechanisms 48
4.6.4. Thermal degradation kinetics 54
CHAPTER 5 CONCLUSIONS 58
REFERENCES 149
參考文獻 References
[1]Mochizuki, M.; Katsuyuki, M.; Kenji, Y.; Naoji, I.; Shigemitsu, M.; Yoshiaki, I. Structural effects upon enzymatic hydrolysis of poly(butylene succinate-co-ethylene succinate)s. Macromolecules 1997, 30, 7403-7407.
[2]Iwata, T.; Doi, Y. Crystal structure and biodegradation of aliphatic polyester crystals. Macromol Chem Phys 1999, 200, 2429–2442.
[3]Jin, H. J.; Lee, B. Y.; Kim, M. N.; Yoon, J. S. Thermal and mechanical properties of mandelic acid-copolymerized poly(butylene succinate) and poly(ethylene adipate). J Polym Sci Part B: Polym Phys 2000, 38, 1504-1511.
[4] Chatani, Y.; Hasegawa, R.; Tadokoro, H. Polym Prepr Jpn 1971, 20, 420.
[5]Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Crystal transition mechanisms in poly(tetramethylene succinate). Polymer J 1995, 27, 1230–1238.
[6]Ihn, K. J.; Yoo, E. S.; Im, S. S. Structure and morphology of poly(tetramethylene succinate) crystals. Macromolecules 1995, 28, 2460–2464.
[7]Miyata, T.; Masuko, T. Crystallization behaviour of poly(tetramethylene succinate). Polymer 1998, 39, 1399–1404.
[8]Yoo, E. S.; Im, S. S. Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci Part B: Polym Phys 1999, 37, 1357–1366.
[9]Gan, Z. H.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2001, 2, 605–613.
[10]Cao, A.; Okamura, T.; Nakayama, K. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly(butylene succinate-co-diethylene glycol succinate)s. Polym Degrad Stab 2002, 78, 107–117.
[11]Yasuniwa, M.; Satou, T. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples. J Polym Sci Part B: Polym Phys 2002, 40, 2411–2420.
[12]Qiu, Z. B.; Komur, M.; Ikehara, T.; Nishi, T. DSC and TMDSC study of melting behaviour of poly(butylene succinate) and poly(ethylene succinate). Polymer 2003, 44, 7781–7785.
[13]Yasuniwa, M.; Tsubakihara, S.; Satou, T.; Iura, K. Multiple melting behavior of poly(butylene succinate). II. Thermal analysis of isothermal crystallization and melting process. J Polym Sci Part B: Polym Phys 2005, 43, 2039–2047.
[14]Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study. Polymer 2005, 46, 12081–12092.
[15]Wang, X. H.; Zhou, J. J.; Li, L. Multiple melting behavior of poly(butylene succinate). Eur Polym J 2007, 43, 3163–3170.
[16]Zhu, C. Y.; Zhang Z. G.; Liu Q. P.; Wang Z. P.; Jin J. Synthesis and biodegradation of aliphatic polyesters from dicarboxylic acids and diols. J Appl Polym Sci 2003, 90, 982– 990.
[17]Tserki V.; Matzinos P.; Pavlidou E.; Vachliotis D.; Panayiotou C. Biodegradable aliphatic polyesters. Part I. Properties and biodegradation of poly(butylene succinate-co-butylene adipate), Polym Degrad Stab 2006, 91, 367–376.
[18]Ranucci, E.; Liu, Y.; Lindblad, M. S.; Albertsson, A. C. New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromol Rapid Commun 2000, 21, 680–684.
[19]Liu, Y.; Ranucci, E.; Lindblad, M. S.; Albertsson, A. C. New biodegradable polymers from renewable sources: Polyester-carbonates based on 1,3-propylene-co- 1,4-cyclohexanedimethylene succinate. J Polym Sci Part A: Polym Chem 2001, 39, 2508–2519.
[20]Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polym Degrad Stab 2006, 91, 60–68.
[21]Xu, Y. X.; Xu, J.; Guo, B. H.; Xie, X. M. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B: Polym Phys 2007, 45, 420–428.
[22]Xu, Y. X.; Wu, J.; Liu, D. H.; Guo, B. H.; Xie, X. M. Synthesis and characterization of biodegradable poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 2008, 109, 1881–1889.
[23]Papageorgiou, G. Z.; Bikiaris, D. N. Synthesis, cocrystallization, and enzymatic degradation of novel poly(butylene-co-propylene succinate) copolymers. Biomacromolecules 2007, 8, 2437–2449.
[24]Chen, C. H.; Peng, J. S.; Chen, M.; Lu, H. Y.; Tsai, C. J.; Yang, C. S. Synthesis and characterization of poly(butylene succinate) and its copolyesters containing minor amounts of propylene succinate. Colloid Polym Sci 2010, 288, 731–738.
[25]Lu S. F.; Chen M.; Shih Y. C.; Chen C. H. Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate-co-propylene succinate)s. J Polym Sci Part B: Polym Phys 2010, 48, 1299–1308.
[26]Sullivan C. J.; Dehm D. C.; Reich E. E.; Dillon M. E. Polyester resins based upon 2-methyl-1, 3-propanediol. J Coating Tech 1990, 62, 37–45.
[27]Bello P.; Bello A.; Riande E. Conformational characteristics and crystalline order in poly(2-methyl-1,3-propane glycol terephthalate). Macromolecules 1999, 32, 8197– 8203.
[28]Nalampang K.; Johnson A. F. Kinetics of polyesterification: modeling and simulation of unsaturated polyester synthesis involving 2-methyl-1,3-propanediol. Polymer 2003, 44, 6103–6109.
[29]Suh J.; Spruiell J. E.; Schwartz S. A. Melt spinning and drawing of 2-methyl-1,3- propanediol-substituted poly(ethylene terephthalate). J Appl Polym Sci 2003, 88, 2598– 2606.
[30]Lewis C. L.; Spruiell J. E. Crystallization of 2-methyl-1,3-propanediol substituted poly(ethylene terephthalate). I. Thermal behavior and isothermal crystallization. J Appl Polym Sci 2006, 100, 2592–2603.
[31]Chen C. H.; Yang C. S.; Chen M.; Shih Y. C.; Hsu H. S.; Lu S. F. Synthesis and characterization of novel poly(butylenesuccinate-co-2-methyl-1,3-propylene succinate). eXPRESS Polym Lett 2011, 5, 284–294.
[32]Hoffman, J. D.; Davis, G. T.; Lauritzen, Jr J. I. Treatise on solid state chemistry, Plenum Press: New York, 1976; vol 3, Chapter 7.
[33]Chen M.; Chung C.T. Crystallinity of isothermally and nonisothermally crystallized poly(ether ether ketone) composites. Polym Comp 1989, 19, 689–697.
[34]Avrami, M. Kinetics of Phase Change. I. General Theory. J Chem Phys 1939, 7, 1103–1112.
[35]Avrami, M. Kinetics of phase change. II. Transformation-time relation for random distribution of nuclei. J Chem Phys 1939, 8, 212–214.
[36] Avrami, M. Kinetics of phase change. III. Granulation, phase change, and microstructure. J Chem Phys 1941, 9, 177–184.
[37]Jeziorny, A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 1978, 19, 1142–1144.
[38] Tobin, M. C. Theory of phase transition with growth site impingement. I. J Polym Sci: Polym Phys Ed 1974, 12, 399–406.
[39] Tobin, M. C. The theory of phase transition kinetics with growth site impingement. II. Heterogeneous nucleation. J Polym Sci Polym Phys Ed 1976, 14, 2253–2257.
[40] Tobin, M. C. Theory of phase transition kinetics with growth site impingement. III. Mixed heterogeneous-homogeneous nucleation and nonintegral exponents of the time. J Polym Sci Polym Phys Ed 1977, 15, 2269–2275.
[41]Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158.
[42]Liu, T. X.; Mo, Z. S.; Wang, S. G.; Zhang, H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 1997, 37, 568–575.
[43]Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic, J Polym Sci Part C 1964, 6, 183–195.
[44]Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem 2001, 22, 178–183.
[45]Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional approach to evaluating the Hoffman- Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol Rapid Commun 2004, 25, 733–738.
[46] Lu J. S.; Chen M.; Lu S. F.; Chen C. H. Nonisothermal crystallization kinetics of novel biodegradable poly(butylene succinate-co-2-methyl-1,3-propylene succinate)s. J Polym Res 2011, 18, 1527–1537.
[47]Ozawa, T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 1965, 38, 1881–1886.
[48]Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal structures of α and β forms of poly(tetramethylene succinate). Polymer 2000, 41, 4719–4727.
[49] Supaphol P.; Dangseeyun N.; Srimoaon P. Non-isothermal melt crystallization kinetics for poly(trimethylene terephthalate)/ poly(butylene terephthalate) blends. Polym Test 2004, 23, 175–185.
[50] Somrang N., Nithitanakul M., Grady B. P., Supaphol P.: Non-isothermal melt crystallization kinetics for ethylene–acrylic acid copolymers and ethylene–methyl acrylate–acrylic acid terpolymers. Eur Polym J 2004, 40, 829–838.
[51] Supaphol P.; Dangseeyun N.; Srimoaon P.; Nithitanakul M. Nonisothermal melt-crystallization kinetics for three linear aromatic polyesters. Thermochim Acta 2003, 406, 207–220.
[52] Ziaee Z.; Supaphol P. Non-isothermal melt- and cold-crystallization kinetics of poly(3-hydroxybutyrate). Polym Test 2006, 25, 807–818.
[53] Qiu, Z. B.; Yang, W. T. Nonisothermal crystallization kinetics of biodegradable poly(butylene succinate)/poly(vinyl phenol) blend. J Appl Polym Sci 2007, 104, 972–978.
[54] Papageorgiou, G. Z.; Achilias, D. S.; Bikiaris, D.N. Crystallization kinetics of biodegradable poly(butylene succinate) under isothermal and non-isothermal conditions. Macromol Chem Phys 2007, 208, 1250–1264.
[55] Hama, H.; Tashiro, K. Structural changes in non-isothermal crystallization process of melt-cooled polyoxymethylene. [I] Detection of infrared bands characteristic of folded and extended chain crystal morphologies and extraction of a lamellar stacking model. Polymer 2003, 44, 3107–3116.
[56] Hama, H.; Tashiro, K. Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements. Polymer 2003, 44, 6973–6988.
[57]March J. Advanced Organic Chemistry: Reactions, Mechanism, and Structure; 3rd Edn, John Wiley & Sons 1985, New York, p. 897.
[58]ASTM E 168-06, Standard Practices for General Techniques of Infrared Quantitative Analysis. American Society for Testing and Materials 2006, West Conshohocken, PA, USA.
[59]Chrissafis, K.; Paraskevopoulos, K. M.; Bikiaris, D. N. Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochim Acta 2005, 435, 142–150.
[60]Yan, C.; Zhang, Y.; Hu, Y.; Ozaki Y.; Shen, D.; Gan, Z.;Yan, S.; Takahashi I. Melt crystallization and crystal transition of poly(butylene adipate) revealed by infrared spectroscopy. J Phys Chem B 2008, 112, 3311–3314.
[61] Shih, Y. F.; Chieh, Y. C. Thermal degradation behavior and kinetic analysis of biodegradable polymers using various comparative models, 1 poly(butylene succinate). Macromol Theory Simul 2007, 16, 101–110.
[62]Dollimore, D.; Tong, P.; Alexander, K. S. The kinetic interpretation of the decomposition of calcium carbonate by use of relationships other than the Arrhenius equation. Thermochim Acta 1996, 283, 13-27.
[63]Paik P.; Kar K. K. Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: Effects of particle size. Polym Degrad Sta 2008b, 93, 24–35.
[64]Lotti, N.; Finelli, L.; Siracusa, V.; Munari, A.; Gazzana M. Synthesis and thermal characterization of poly(butylene terephthalate-co-thiodiethylene terephthalate) copolyesters. Polymer 2002, 43, 4355
[65] Jimenez, A.; Torre, L.; Kenny, J. M. Thermal degradation of poly(vinyl chloride)
plastisols based on low-migration polymeric plasticizers. Polym Degrad Stab 2001,
73, 447&#8722;453.
[66] Marcilla A.; Gomez A., Menargues S. TGA/FTIR study of the catalytic pyrolysis
of ethylenevinyl acetate copolymers in the presence of MCM-41. Polym Degrad
Stab 2005, 89, 145–152.
[67] Gonzalez A.; Irusta L.; Fernandez-Berridi M. J.; Iriarte M., Iruin J. J. Application
of pyrolysis/gas chromatography/Fourier transform infrared spectroscopy and TGA
techniques in the study of thermal degradation of poly(3-hydroxybutyrate). Polym
Degrad Stab 2005, 87, 347–354.
[68] Khemani, K. C. A novel approach for studying the thermal degradation, and for
estimating the rate of acetaldehyde generation by the chain scission mechanism in
ethylene glycol based polyesters and copolyesters. Polym Degrad Stab 2000, 67,
91&#8722;99.
[69] Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym
Degrad Stab 2008, 93, 561&#8722;584.
[70] Lu S. F.; Chen M.; Chen C. H. Mechanisms and kinetics of thermal degradation of
poly(butylene succinate-co-propylene succinate)s. J Appl Polym Sci 2012, 123,
3610– 3619.
15 5
[71] Rizzarelli, P.; Puglisi, C.; Montaudo, G. Matrix-assisted laser desorption/ionization
time-of-flight/time-of-flight tandem mass spectra of poly(butylene adipate). Rapid
Commun Mass Spectrom 2006, 20, 1683&#8722;1694.
[72] Chrissafis K.; Paraskevopoulos K. M.; Papageorgiou G. Z.; Bikiaris D. N. Thermal
decomposition of poly(propylene sebacate) and poly(propylene azelate)
biodegradable polyesters: Evaluation of mechanisms using TGA, FTIR and GC/MS.
J Anal Appl Pyrol 2011, 92, 123–130.
[73] Bikiaris, D. N.; Chrissafis K.; Paraskevopoulos, K. Investigation of thermal
degradation mechanism of an aliphatic polyester using pyrolysis&#8722;gas
chromatography&#8722;mass spectrometry and a kinetic study of the effect of the amount
of polymerisation catalyst. Polym Degrad Stab 2007, 92, 525–536.
[74] Rizzarelli P.; Carroccio S. Thermo-oxidative processes in biodegradable
poly(butylene succinate). Polym Degrad Stab 2009, 94, 1825–1838.
[75] Pan, C. K.; Liu, F.; Sutton, P.; Vivilecchia, R. The use of thermal desorption
GC/MS to study weight loss in thermogravimetric analysis of di-acid salts.
Thermochim Acta 2005, 435, 11&#8722;17.
[76] Khabbaz F.; Karlsson S.; Albertsson A. C. Py-GC/MS an effective technique to
characterizing of degradation mechanism of poly(l-lactide) in the different
environment. J Appl Polym Sci 2000, 78, 2369–2378.
[77] Samperia F.; Puglisi C.; Sutton P.; Alicata R.; Montaudo G. Thermal degradation
of poly(butylene terephthalate) at the processing temperature. Polym Degrad Stab
2004, 83, 11–17.
[78] Chrissafis K.; Paraskevopoulos K. M.; Bikiaris D. N. Effect of molecular weight
on thermal degradation mechanism of the biodegradable polyester poly(ethylene
succinate). Thermochim Acta 2006, 440, 166–175.
[79] Su S.; Wilkie C. A. The thermal degradation of nanocomposites that contain an
oligomeric ammonium cation on the clay. Polym Degrad Stab 2004, 83, 347-362.
[80] Jang B. N.; Wilkie C. A. The thermal degradation of bisphenol A polycarbonate in
air. Thermochim Acta 2005, 426, 73–84.
[81] Jang B. N.; Wilkie C. A. A TGA/FTIR and mass spectral study on the thermal
degradation of bisphenol A. polycarbonate. Polym Degrad Sta 2004b, 86, 419–430.
[82] Liu Y. L.; Wei W. L.; Chen Y. J.; Wu C. S.; Tsai M. H. Novel thermosetting resins
based on 4-(N-maleimido)phenylglycidylether III. Studies on the thermal
15 6
degradation kinetics and mechanisms of the cured resins. Polym Degrad Stab 2004,
86, 135–145.
[83] Chung, C. T.; Chen, M. Spherulite growth rate of poly(ether ether ketone) (PEEK).
Polym Prepr 1992, 33, 420–421.
[84] Chen, M.; Chung, C. T. Analysis of crystallization kinetics of poly(ether ether
ketone) by a nonisothermal method. J Polym Sci Part B: Polym Phys 1998, 36,
2393–2399.
[85] Di Lorenzo, M. L.; Cimmino, S.; Silvestre, C. Nonisothermal crystallization of
isotactic polypropylene blended with poly(alpha-pinene). 2. Growth rates.
Macromolecules 2000, 33, 3828– 3832.
[86] Tsai C. J.; Chen M.; Lu H. Y.; Chang W. C.; Chen C. H. Crystal growth rates and
master curves of poly(ethylene succinate) and its copolyesters using a nonisothermal
method. J Polym Sci Part B: Polym Phys 2010, 48, 932–939.
[87] Kissinger, H. E. Reaction kinetics in differential thermal analysis. Anal Chem 1957,
29, 1702–1706.
[88] Lu H. Y.; Chen M; Chen C. H.; Lu J. S.; Hoang K. C.; Tseng M. Biodegradable
poly(ethylene succinate) blends and copolymers containing minor amounts of
poly(butylenes succinate). J Appl Polym Sci 2010, 116, 3693–3701.
[89] Li X. Y.; Sun J.; Huang Y. J.; Geng Y.; Wang X.; Ma Z.; Shao C. G.; Zhang X.;
Yang C. L.; Li L. B. Inducing new crystal structures through random
copolymerization of biodegradable aliphatic polyester. Macromolecules 2008, 41,
3162–3168.
[90] ASTM E 1641–07 ‘Standard Test Method for Decomposition Kinetics by
Thermogravimetry’ American Society for Testing and Materials 2007, West
Conshohocken, PA, USA.
[91] Keller, A. The spherulitic structure of crystalline polymers. 2. The problem of
molecular orientation in polymer spherulites. J Polym Sci 1955, 17, 351–364.
[92] Sperling, L. H. Introduction to physical polymer science, 4rd ed.;
Wiley&#8722;Interscience: New York, 2006; Chapter 6, 239–323.
[93] Qiu, Z. B.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T.
Nonisothermal crystallization kinetics of poly(butylene succinate) and poly(ethylene
succinate). Polym J 2004, 36, 642–646
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code