Responsive image
博碩士論文 etd-0811112-161018 詳細資訊
Title page for etd-0811112-161018
論文名稱
Title
以微生態系統探討Pseudomonas mendocina NSYSU整治戴奧辛汙染土壤
Study on the bioremediation of dioxin-contaminated soil by microcosm system with Pseudomonas mendocina NSYSU
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-05
繳交日期
Date of Submission
2012-08-11
關鍵字
Keywords
Pseudomonas mendocina NSYSU、變性梯度膠體電泳、戴奧辛、大豆卵磷脂
Pseudomonas mendocina NSYSU, dioxin, soya lecithin, PCR-DGGE
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
戴奧辛素有世紀之毒的稱號,而其親脂的特性除了使其容易與有機物質強力吸附並持續存在於環境外,同時容易累積在生物體中,長久下來對生物體之健康及生態環境產生極大的危害。本實驗室先前自現場場址之土壤篩選出一株能以五氯酚作為唯一碳源之現地原生菌種,Pseudomonas mendocina NSYSU,並發現其對戴奧辛亦有不錯的分解效果。因此本實驗採集自戴奧辛汙染場址之高濃度戴奧辛污染土壤(平均濃度為60,100 ng I-TEQ/ kg),並設計四種不同條件且均添加相同濃度P. mendocina NSYSU之微生態系統(microcosm)(包括土壤滅菌組、土壤未滅菌組、添加大豆卵磷脂組及添加大豆卵磷脂之滅菌土壤組),旨在探討該菌對高濃度戴奧辛之降解效率,以評估未來進行現場戴奧辛汙染整治之可行性。此外,研究中利用PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis)技術分析各微生態系統中之細菌多樣性與降解時間之變化。實驗結果顯示,添加大豆卵磷脂之微生態系統對戴奧辛降解效果最佳,反應50天後對八氯戴奧辛OCDD (octachlorinated dibenzo-p-dioxins)降解效率為62%;對八氯呋喃OCDF (octachlorinated dibenzofurans)降解效率為47%。從菌相豐富度變化分析之結果可看出,添加大豆卵磷脂之微生態系統儘管一開始菌相豐富度不如土壤未滅菌組,但隨降解時間增加,添加大豆卵磷脂菌相豐富度逐漸上升,顯示大豆卵磷脂的添加,能將土壤中戴奧辛析出並分配至所形成之微胞當中,此作用不但降低系統中戴奧辛之有效毒性,維持了戴奧辛降解菌群的數量,同時提升戴奧辛降解菌群與汙染物之間的可及性,進而提升戴奧辛的分解效率,導致整治後期整體菌相豐富度提高。因此利用大豆卵磷脂進行現場整治時,最好搭配監測P. mendocina NSYSU之菌量變化及整體菌相變化,才能達到整治之最佳成效。
Abstract
The century poison “dioxins” are hydrophobic compounds that can combine with many organic matters and persist in the environment as well as to accumulate in living organisms. Dioxins caused great risk to the health of living organisms and to the entire ecological environment. We had isolated previously one bacterial species, Pseudomonas mendocina NSYSU, which can use pentachlorophenol (PCP) as its sole carbon source and degrade dioxin compounds. In order to study the feasibility of using this bacterial strain to bioremediate an PCDD/Fs polluted site, four microcosm experiment groups were designed to test the degradation efficiency of this strain: sterile soil group, non-sterile soil group, soya lecithin group and non-sterile soil with soya lecithin group. In addition, we also analyzed the shift of community structure of each microcosm by PCR-DGGE. The results show that the soya lecithin group has the highest efficiency to degrade OCDD/OCDF. After fifty days of reaction, the degradation rates of OCDD/OCDF were 62% and 47% respectively. The microbial diversity analysis indicated that the soya lecithin group presented less abundant from the initial stage, but increasing gradually over time. This might related to the formation of micelles in water phase which contained higher concentration of PCDD/Fs dissolved from the soil particles. Therefore, soya lecithin not only can reduce the toxicity of PCDD/Fs, but also can enhance the bioavailability of the organic pollutants to the microorganisms. In conclusion, monitoring the transition of P. mendocina NSYSU as well as the microbial diversity can provide valuable information during the bioremediation process by applying soya lecithin.
目次 Table of Contents
目錄
論文審定書…………………………………………………………..…………………i
致謝……………………………………………………………………….……………ii
摘要……………………………………………………..……………………………..iii
Abstract…………………………………………………..………………..……………v
第一章 前言……………………………………………………………………….. 1
1.1 戴奧辛概述……………………………………………………………….……. 1
1.1.1 PCDD/Fs 基本結構及物理化學性質……………………….……………1
1.1.2 PCDD/Fs 生物毒性及對人體之影響…………………………..……….. 2
1.1.3 PCDD/Fs自然來源………………………………………………………. 5
1.1.4 PCDD/Fs在環境中自然衰減…………………………………………… 6
1.2 戴奧辛降解之微生物…………………………………………………………. 7
1.2.1 降解戴奧辛相關微生物及其降解機制之文獻回顧…………………….7
1.2.1.1 好氧環境下進行氧化破環………………………………..…………..7
1.2.1.2 厭氧環境下進行還原性脫氯……………………………….…...…..14
1.2.1.3 真菌……………………………………………………….……….…19
1.2.2 Pseudomonas mendocina NSYSU……………………………………….22
1.2.2.1 Pseudomonas mendocina strain NSYSU生化測試………………….23
1.2.2.2 Pseudomonas mendocina NSYSU生長特性及對不同種類戴奧辛…24
1.3 界面活性劑於生物整治上之應用…………………………………..……….26
1.3.1 界面活性劑作用原理………………………………………………..….27
1.3.2 大豆卵磷脂與芳香烴族化合物之降解………………………..……….28
1.4 研究環境微生物之分子生物技術…………………………………………..29
1.4.1 傳統環境微生物培養技術到分子生物技術…………………………....29
1.4.2 研究環境微生物之分子生物技術…………………………..…………..30
1.4.3 PCR-DGGE原理………………………………………………………....31
1.5 研究目的………………………………………..……………………….…….32
第二章 實驗材料與方法…………………………………………..………………..34
2.1 戴奧辛污染場址概述…………………………………………….………….34
2.2 戴奧辛汙染土之採集…………………………………………………………34
2.3 實驗試劑及培養基………………………………………………………..….34
2.4 Pseudomonas mendocina NSYSU菌種特性分析……………………………35
2.4.1 Pseudomonas mendocina NSYSU耐高鹽度測試…………………..…..36
2.4.2 Pseudomonas mendocina NSYSU細胞數目檢測………………..……..36
2.4.3 最佳Pseudomonas mendocina NSYSU菌量降解土樣戴奧辛………...37
2.5 戴奧辛降解批次實驗設計…………………………………………..……….38
2.6 以16S rDNA分析技術瞭解微生物分解過程中之變化………………….39
2.6.1 DNA萃取……………………………………………..…………………39
2.6.1.1 土樣之genomic DNA萃取………………………………..…………39
2.6.1.2 Pseudomonas mendocina NSYSU 純菌DNA萃取………..………41
2.6.2 聚合酶連鎖反應PCR……………………………………………………42
2.6.3 變性梯度膠體電泳DGGE…………………………………………..….43
2.6.3.1 變性梯度膠體設備組裝…………………..………………………..43
2.6.3.2 變性梯度膠體配製………………………………………………..44
2.6.3.3 變性梯度膠體清洗及電泳條件……………………………………45
2.6.3.4 變性梯度膠體電泳成像…………………..………………………..45
2.7 DNA Cloning and Sequencing……………………………………………….45
2.7.1 PCR 產物純化濃縮……………………………………………..………45
2.7.2 DNA Ligation……………………………………………………………45
2.7.3 Transformation and Sequencing……………………………..…..…….46
2.7.4 NCBI database進行鑑種…………………..…………………………….46
2.7.5 單一或特定DGGE條帶之定序……………………………..………….46
2.8 大豆卵磷脂對Pseudomonas mendocina NSYSU生長影響…………………47
第三章 結果與討論……………………….………………………………………...49
3.1 Pseudomonas mendocina NSYSU 菌種特性探討…………………………..49
3.1.1 耐高鹽度測試……………………………………………………………49
3.1.2 氧氣對生長之影響…………………………………………………..….51
3.1.3 降解土樣戴奧辛之最佳添加菌量……………………..………………. 52
3.2 微生態系統降解高濃度戴奧辛之批次實驗…………………..…………….53
3.2.1 戴奧辛汙染土之初始濃度分析……………………………………...……53
3.2.2 微生態系統降解戴奧辛之結果………………………………………..…..53
3.2.2.1 各組降解OCDD之結果……………………………………….……...53
3.2.2.2 各組降解OCDF之結果…………………………………………..…….54
3.2.2.3 總結…………………………………………………..………..………..54
3.2.3 以PCR-DGGE技術瞭解微生物分解過程之菌相變化…………..…….55
3.2.3.1 以PCR-DGGE技術監測Pseudomonas mendocina NSYSU降解過程之 變化……………………………………………………………………...55
3.2.3.2 未滅菌組之優勢菌種定序鑑定與分析………………..……………….57
3.2.3.3 大豆卵磷脂組菌種鑑定…………………..………………………….....59
3.2.3.4 滅菌兩組菌相豐富度變化之比較分析……………….………..…….60
3.2.3.5未滅菌兩組總生菌數變化之比較分析……………………..…………..61
3.2.4 大豆卵磷脂對Pseudomonas mendocina NSYSU生長影響…………….62
3.2.5 大豆卵磷脂於戴奧辛降解反應中所扮演的角色………………………..63
3.2.6 總結………………………………………………………………………..64
第四章 結論與建議…………………….………………………………………….65
參考文獻………………………………………..…………………………………….68
圖表……………………………………………….…………………………………85
 
圖目錄
圖1.1 好氧環境下微生物對2-CDD氧化破環之降解途徑……………..………..10
圖1.2 好氧環境下微生物對2-CDF氧化破環之降解途徑………..………………12
圖1.3 Dehalococcoides sp. strain CBDB1對兩種PCDDs脫氯之途徑……..……16
圖1.4 Electron shuttles概念圖………………………………………………..……17
圖1.5 electron shuttles為這些化合物的衍生物…………………………………..18
圖1.6 Phanerochaete chrysosporium在低氮源條件下降解2,7-DCDD之途徑….20
圖1.7 P. mendocina NSYSU於好養及厭氧條件之生長曲線……………………24
圖3.1 P. mendocina NSYSU耐高鹽度測試……………………………….………85
圖3.2 P. mendocina NSYSU在不同鹽濃度下之細胞形態變化………….………86
圖3.3 P. mendocina NSYSU在好氧及厭氧條件下培養24hr後之細胞數目定量..87
圖3.4 最佳P. mendocina NSYSU菌量降解實驗中戴奧辛土樣中之菌數變化..…88
圖3.5 高濃度戴奧辛降解實驗之OCDD濃度時間變化圖…………………....….89
圖3.6 高濃度戴奧辛降解實驗之OCDF濃度時間變化圖……….……….….…89
圖3.7 戴奧辛降解批次實驗滅菌組第一到十二週之PCR-DGGE圖……....….…90
圖3.8 戴奧辛降解批次實驗未滅菌組第一到十週之PCR-DGGE圖……...….…91
圖3.9 戴奧辛降解批次實驗未滅菌組第十二到廿週之PCR-DGGE圖……....….92
圖3.10 戴奧辛降解批次實驗大豆卵磷脂組第一到十週之PCR-DGGE圖…..….93
圖3.11 戴奧辛降解批次實驗大豆卵磷脂組第十二到廿週之PCR-DGGE圖…...94
圖3.12 戴奧辛降解批次實驗大豆滅菌組第一到十二週之PCR-DGGE圖…....95
圖3.13 未滅菌組第八至十三週特定條帶定序之PCR-DGGE圖……..………..96
圖3.14 未滅菌組第一到十周菌相豐富度變化圖………..…………………….….97
圖3.15 未滅菌組第十二到廿周菌相豐富度變化圖…………….………….……..98
圖3.16 大豆卵磷脂組第一到十周菌相豐富度變化圖………..…………………..99
圖3.17 大豆卵磷脂組第十二到廿周菌相豐富度變化圖……..…………………100
圖3.18 大豆卵磷脂組菌種鑑定DGGE條帶圖…………………………………101
圖3.19 大豆卵磷脂對菌相豐富度及總生菌數影響之時間變化圖….………102
圖3.20 大豆卵磷脂對P. mendocina NSYSU生長影響………………..…………102
 
表目錄
表1.1 不同氯取代之戴奧辛物理化學性質……………………..……………………2
表1.2 文獻中已被記載細菌共代謝降解戴奧辛之一級受質………………………..8
表1.3 文獻中記載參與好氧性破環之菌種及酵素活性…….…………...…………12
表1.4 文獻中記載降解含氯戴奧辛之真菌及其降解效率………………..………..21
表1.5 P. mendocina NSYSU生化測試結果…………………………………….…23
表1.6 本實驗室先前曾研究過以P. mendocina NSYSU對不同污染物進行降解..26
表1.7 添加Soya lecithin 對芳香烴族碳氫化合物汙染整治之移除率…..………...29
表2.1 P. mendocina NSYSU耐高鹽度測試…………………………….….………36
表2.2 四種不同環境條件之微生態系統降解高濃度戴奧辛土壤…..……….…….38
表2.3 PCR 配方…………………………………………………………………….43
表2.4 變性梯度膠體電泳之膠體使用之膠體濃度及其配方……………..…..……44
表2.5 以大豆卵磷脂(SL)替代之Defined medium配方……………………..…..…48
表3.1 戴奧辛汙染土壤初始濃度檢測報告…………..……………………………103
表3.2未滅菌組之特定條帶菌種鑑定及相關汙染物降解功能…………….……...104
表3.3 大豆卵磷脂組各條帶菌種鑑定結果…………………………..……………105
表3.4 大豆卵磷脂組之菌種與相關汙染物降解功能………..……………..……..112
表3.5 戴奧辛降解批次實驗各系統之總結…………………..………..…………..113

參考文獻 References
林偉志。未發表之實驗數據。

劉元法、王興國。2000。大豆卵磷脂組成及特性。糧食與油脂(3):11-14。

莊錦堂。2007。以五氯酚分解菌Pseudomonas mendocina NSYSU整治受戴奧辛污染土壤之研究。正修科技大學化學工程研究所碩士論文。

蔡啟堂。2002。五氯酚分解菌之生理特性探討。國立中山大學生物科學系碩士論文。

馬志強。2005。應用生物界面活性劑促進柴油污染土壤中原生菌生物降解效率。國立成功大學環境工程系研究所碩士論文。

Abraham W-R. (2002) Microbial degradation of polychlorinated biphenyls (PCBs) in the environment. Progr Ind Microbiol. 36:29–67.

Adriaens P, Fu QZ, Grbicgalic D. (1995) Bioavailability and transfor-mation of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. Environ Sci Technol. 29:2252–2260.

Adriaens P, Grbic-Galic D. (1994) Reductive dechlorination of PCDD/F by anaerobic cultures and sediments. Chemosphere 29:2253–2259.

Adriaens P, Chang PR, Barkovskii AL. (1996) Dechlorination of PCDD/F by organic and inorganic electron transfer molecules in reduced environments. Chemosphere 32:433–441.

Ahmed M, Focht DD. (1972) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol. 19:42–82.

Alcock RE, Jones KC. (1996) Dioxins in the environment: a review of trend data. Environ Sci Technol. 30:3133–3143.

Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 56:1919–1925.

Anaizi NH, Cohen JJ. (1978) The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the renal tubular secretion of phenolsulfonphthalein. J Pharmacol Exp Ther . 207:748–755.

Arfmann HA, Timmis KN, Wittich RM. (1997) Mineralization of 4-chloro-dibenzofuran by a consortium consisting of Sphingomonas sp. strain RW1 and Burkholderia sp. strain JWS. Appl Environ Microbiol. 63:3458–3462.

Armitage JM, Cousins IT, Persson NJ, Gustafsson O, Cornelissen G, Saloranta T, Broman D, Naes K. (2008) Black carbon-inclusive modeling approaches for estimating the aquatic fate of dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol. 42:3697–3703.

Ballerstedt H, Kraus A, Lechner U. (1997) Reductive dechlorination of 1,2,3,4-tetrachlorodibenzo-p-dioxin and its products by anaerobic mixed cultures from Saale river sediment. Environ Sci Technol. 31:1749–1753.

Barring H, Bucheli TD, Broman D, Gustafsson O. (2002) Soot-water distribution coefficients for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polybrominated diphenylethers determined with the soot cosolvency-column method. Chemosphere 49:515–523.

Becher D, Specht M, Hammer E, Francke W, Schauer F. (2000) Cometabolic degradation of dibenzofuran by biphenyl-cultivated Ralstonia sp. strain SBUG 290. Appl Environ Microbiol. 66: 4528–4531.

Bellinaso MDL, Greer CW, Peralba MdC, Henriques JAP, Gaylarde CC. (2003) Biodegradation of the herbicide trifluralin by bacteria isolated from soil. Microbiol Ecol 43:191–194.

Beurskens K. (1995) Microbial Transformation of Chlorinated Aromatics in Sediments. PhD thesis. Dept of Microbiology. Wageningen University, Wageningen,The Netherlands.
Beurskens JEM, Toussaint M, Dewolf J, Vandersteen JMD, Slot PC, Commandeur LCM, Parsons JR. (1995) Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment. Environ Toxicol Chem. 14:939–943.

Bumpus JA, Tien M, Wright D, Aust SD. (1985) Oxidation of persistent environmental-pollutants by a white rot fungus. Science 228:1434–1436.

Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Gorisch H, Lechner U. (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360.

Bunge M, Ballerstedt H, Lechner U. (2001) Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments. Chemosphere 43:675–681.

Bunge M, Lechner U. (2009) Anaerobic reductive dehalogenation of polychlorinated dioxins. Appl Microbiol Biotechnol. 84:429–444.

Bunge M, Wagner A, Fischer M, Andreesen JR, Lechner U. (2008) En-richment of a dioxin-dehalogenating Dehalococcoides species in two-liquid phase cultures. Environ Microbiol. 10:2670–2683.

Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, et al. (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421:357–360.

Canstein HF, Li Y, Felske A, Wagner-Dobler I. (2001) Long-term stability of mercury-reducing microbial biofilm communities analyzed by 16S–23S rDNA interspacer region polymorphism. Microb Ecol. 42:624–634.

Chang BV, Chang IT, Yuan SY. (2008) Anaerobic degradation of phenanthrene and pyrene in mangrove sediment. Bull Environ Contam Toxicol. 80:145-149.

Chang YS (2008) Recent Developments in microbial biotransformation and biodegradation of dioxins. J. Mol. Microbiol. Biotechnol. 15: 152-171.

Cornelissen G, Gustafsson O, Bucheli TD, Jonker MT, Koelmans AA, van Noort PC. (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol. 39:6881–6895.

Costa F, Quintelas C, Tavares T. (2012) Kinetics of biodegradation of diethylketone by Arthrobacter viscosus. Biodegradation 23:81-92.

Crouzet P, Otten L. (1995) Sequence and mutational analysis of a tartrate utilization operon from Agrobacterium vitis. J Bacteriol. 177:6518-6526.

Danko A S, Saski CA, Tomkins JP, Freedman DL. (2006) Involvement of coenzyme M during aerobic biodegradation of vinyl chloride and ethene by Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD. Appl Environ Microbiol. 72:3756-3758.

Dennis P, Edwards EA, Liss SN, Fulthorpe R. (2003) Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol. 69:769–778.

Deschenes L, Lafrance P, Villeneuve J-P, Samson R. (1996) Adding so-dium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol. 46:638-646.

Deshpande NM, Sarnaik SS, Paranjpe SA, Kanekar PP. (2004) Optimization of dimethoate degradation by Brevundimonas sp. MCM B-427 using factorial design: studies on interactive effects of environmental factors. World J. Microbiol. Biotechnol. 20:455-462.

DeVito MJ, Birnbaum LS, Farland WH, Gasiewicz TA. (1995) Comparisons of estimated human body burdens in experimentally species exposed animals. Environ Health Persp. 103:820–831.

de Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol. 7:314–325.

Dickins M, Seefeld MD, Peterson RE.(1981) Enhanced liver DNA syn-thesis in partially hepatectomized rats pretreated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol. 58:389-398.

Dong X, Fushinobu S, Fukuda E, Terada T, Nakamura S, Shimizu K, Nojiri H, Omori T, Shoun H, Wakagi T. (2005) Crystal structure of the terminal oxygenase component of cumene dioxygenase from Pseudomonas fluorescens IP01. J Bacteriol 187:2483–2490.

Du XY, Zhu NK, Xia XJ, Bao ZC, Xu XB. (2001) Enhancement of biodegradability of polychlorinated dibenzo-p-dioxins. J Environ Sci. 36:1589–1595.

Fava F, Gioia DD. (2001) Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil. Biotechnol Bioeng 72:177–184.

Fava F, Berselli S, Conte P, Piccolo A, Marchetti L. (2004) Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol. Bioeng. 88:214-223.

Fazzini B, Andres R. (2006) Proteomics and kinetic modeling analysis of 4-chlorosalicylate degrading bacterial community.1-187. Braunschweig.

Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni D. (2005) T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated biphenyls. Res. Microbiol. 156:201–210.

Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Haggblom MM. (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol. 38:2075–2081.

Field J A, Sierra-Alvarez R. (2008) Microbial degradation of chlorinated dioxins. Chemosphere 71:1005–1018.

Fiorella PD, Spain JC. (1997) Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007-2015.

Friesen KJ, Webster GRB. (1990) Temperature dependence of the aqueous solubilities of highly chlorinated dibenzo-p-dioxins. Environ Sci Technol 24:97–10.1

Fortnagel P, Wittich R-M, Harms H, Schmidt S, Franke S, Sinnwell V, Wilkes H, Francke W. (1989) New bacterial degradation of the biaryl ether structure: egioselective dioxygenation prompts cleavage of the ether bonds. Naturwissenschaften. 76:523–524.

Fu QS, Barkovskii AL, Adriaens P. (1999) Reductive transformation of dioxins: an assessment of the contribution of dissolved organic matter to dechlorination reactions. Environ Sci Technol. 33:3837–3842.

Furukawa K, Tonomura K, Kamibayashi A. (1978) Effect of chlorine substitution on the biodegradability of polychlorinated biphenyl. Appl Environ Microbiol 35:223–7.

Fuse H, Takimura O, Murakami K, Inoue H, Yamaoka Y. (2003) Degradation of chlorinated biphenyl, dibenzofuran, and dibenzo- p –dioxin by marine bacteria that degrade biphenyl, carbazole, or dibenzofuran. Biosci Biotechnol Biochem. 67:1121–1125.

Gaus C, Brunskill GJ, Connell DW, Prange J, Muller JF, Papke O, Weber R. (2002) Transformation processes, pathways, and possible sources of distinctive polychlorinated dibenzo-p-dioxin signatures in sink environments. Environ Sci Technol. 36:3542–3549.

Habe H, Chung JS, Lee JH, Kasuga K, Yoshida T, Nojiri H, Omori T. (2001) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by two types of bacteria having angular dioxygenases with different features. Appl Environ Microbiol. 67:3610–3617.

Hagenmaier H, Brunner H, Haag R, Kraft M. (1987) Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and other chlorinated aromatic compounds. Environ Sci Technol. 21:1085–1088.

Hajmeer M, Ceylan E et al. (2006). Impact of sodium chloride on Escherichia coli O157:H7 and Staphylococcus aureus analysed using transmission electron microscopy. Food Microbiol. 23:446–452.

Hammel KE, Kalyanaraman B, Kirk TK. (1986) Oxidation of polycyclic aromatic-hydrocarbons and dibenzo-[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 261:6948–6952.

Harayama S, Kok M. (1992) Functional and evolutionary relpltionships among diverse oxygenases. Annu Rev Microbiol. 46:565-601.

He JZ, Holmes VF, Lee PKH, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol. 73:2847–2853.

Hernandez ME, Newman DK. (2001) Extracellular electron transfer. Cell Mol Life Sci. 58:1562-1571.

Hickey WJ, Focht DD. (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol. 56:3842-3850.

Hiraishi A, Yonemitsu Y, Matsushita M, Shin YK, Kuraishi H, Kawahara K. (2002) Characterization of Porphyrobacter sanguineus sp. nov., an aerobic bacteriochlorophyll-containing bacterium capable of degrading biphenyl and dibenzofuran. Arch Microbiol. 178:45–52.

Holliger C, Wohlfahrt G, Diekert G. (1999) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev. 22:383–398.

Hong HB, Chang YS, Nam IH, Fortnagel P, Schmidt S. (2002) Biotransformation of 2,7-dichloro- and 1,2,3,4-tetrachlorodibenzo-p-dioxin by Sphingomonas wittichii RW1. Appl Environ Microbiol. 68:2584–2588.

Hong HB, Nam IH, Murugesan K, Kim YM, Chang YS. (2004) Biodegradation of dibenzo- p -dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03. Biodegradation 15:303–313.

Huang CL, Harrison BK, Madura J, Dolfing J (1996) Gibbs free energies of formation of PCDDs: evaluation of estimation methods and application for predicting dehalogenation pathways. Environ Toxicol Chem 15:824–836.

Iida T, Nakamura K, Izumi A, Mukouzaka Y, Kudo T. (2006) Isolation and characterization of a gene cluster for dibenzofuran degradation in a new dibenzofuran-utilizing bacterium, Paenibacillus sp. strain YK5. Arch Microbiol. 184: 305–315.

Jennings L K, Chartrand MMG, Lacrampe-Couloume G, Lollar BS, Spain JC, Gossett JM. (2009) Proteomic and transcriptomic analyses reveal genes upregulated by cis-Dichloroethene in Polaromonas sp. Strain JS666. Appl Environ Microbiol. 75:3733-3744.

Kang SH, Choi W. (2009) Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ Sci Technol. 43:878-883.

Kamei I, Suhara H, Kondo R. (2005) Phylogenetical approach to isolation of white-rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol. 69:358–366.

Kao C M, Liu J K et al. (2005). Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU. J. Hazardous Materials 124:68-73.

Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S. (1998) Structure of an aromatic-ringhydroxylating dioxygenase-naphthalene 1, 2-dioxygenase. Structure 6:571–586.
Keim T, Francke W, Schmidt S, Fortnagel P. (1999) Catabolism of 2,7-dichloro- and 2,4,8-trichlorodibenzofuran by Sphingomonas sp. strain RW1. J Ind Microbiol Biotechnol. 23, 359–363.

Klecka G M, Gibson D T. (1980) Metabolism of dibenzo-para-dioxin and chlorinated dibenzo-para-dioxins by a Beijerinckia species. Appl Environ Microbiol. 39: 288–296.

Kibbey T C G and Hayes K F. (1998) A predictive numerical thermodynamic model of mixed nonionic surfactant sorption in natural systems. J Colloid Interface Sci. 197:210-220.

Kim SII, Kim S J, Nam M H, Kim S, Ha K-S, Oh K-H, Yoo J-S, Park Y-M. (2002) Proteome analysis of aniline-induced proteins in Acinetobacter lwoffii K24. Curr Microbiol. 44:61-66.

Kim S I, Leem S H, Choi J S, Chung Y H, Kim S, Park YM, Park YK, Lee YN, Ha KS. (1997) Cloning and characterization of two catA genes in Acinetobacter lwoffii K24. J Bacteriol. 179:5226-31.

Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, Kamagata Y (2006) Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol. 73: 474–484.

Kitagawa W, Kimura N, Kamagata Y. (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol. 186:4894–4902.

Kjeller L O, Rappe C. (1995) Time trends in levels, patterns, and profiles for polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in a sediment core from the Baltic proper. Environ Sci Technol. 29:346–355.

Klecka G M, Gibson D T. (1980) Metabolism of dibenzo-para-dioxin and chlorinated dibenzo-para-dioxins by a Beijerinckia species. Appl Environ Microbiol. 39:288–296.

Kluyev N, Cheleptchikov A, Brodsky E, Soyfer V, Zhilnikov V. (2002) Reductive dechlorination of polychlorinated dibenzo-pdioxins by zerovalent iron in subcritical water. Chemosphere 46:1293–1296.

Krausova V I, Robb F T et al (2004). Biodegradation of dichloromethane in an estuarine environment. Hydrobiologia 559:77-83.

Kubota M, Kawahara K, Sekiya K, Uchida T, Hattori Y, Futamata H, Hiraishi A. (2005) Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted envi-ronments. Syst Appl Microbiol. 28: 165–174.

L’Abbee JB, Barriault D, Sylvestre M. (2005) Metabolism of dibenzofuran and dibenzo-p–dioxin by the biphenyl dioxygenase of Burkholderia xenovorans LB400 and Comamonas testosterone B-356. Appl Microbiol Biotechnol. 67: 506–514.

Liaw H J, Srinivasan V R. (1990) Biodegradation of diphenyl ethers by a copper-resistant mutant of Erwinia sp.. J Indust Microbiol. 6: 235–241.

Liu H J, Yang C Y, Tian Y, Lin G H, Zheng T L. (2011) Using population dynamics analysis by DGGE to design the bacterial consortium isolated from mangrove sediments for biodegradation of PAHs. Int Biodeterior Biodegrad. 65:269–275.

Lovley D R, Woodward J C, Chapelle F H. (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128-131.

Mahiudddin Md, Fakhruddin A N M, Mahin A A. (2012) Degradation of Phenol via Meta Cleavage Pathway by Pseudomonas fluorescens PU1. ISRN Microbiol. 2012:1-6.

Malmvarn A, Zebuhr Y, Kautsky L, Bergman K, Asplund L. (2008) Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere 72:910–916.

Matsumura F. (1995) Mechanism of action of dioxin-type chemicals, pesticides, and other xenobiotics affecting nutritional indexes. Am J Clin Nutr. 61:695S–701S.

McConnely EE, Moore JA, Dalgald DW. (1978) Toxicity of 2,3,7,8-tetra- chlorodibenzo-p-dioxin in rhesus monkeys (Macaca mulata) following a single oral dose. Toxicol Appl Pharmacol. 43:175–187.

Mnif S, Chamkha M, Sayadi S. (2009) Isolation and characterization of Halomonas sp. strain C2SS100, a hydrocarbon-degrading bacterium under hypersaline conditions. J Appl Microbiol. 107:785–794.

Mitoma Y, Uda T, Egashira N, Simion C, Tashiro H, Tashiro M, Fan XB. (2004) Approach to highly efficient dechlorination of PCDDs, PCDFs, and coplanar PCBs using metallic calcium in ethanol under atmospheric pressure at room temperature. Environ Sci Technol. 38:1216–1220.

Mitrou PI, Dimitriadis G, Raptis SA. (2001) Toxic effects of 2,3,7,8-tetrachloro-dibenzo-p-dioxin and related compounds. Eur J Intern Med. 12:406-411.

Mori T, Kondo R. (2002a) Degradation of 2,7-dichlorodibenzo-p-dioxin by wood-rotting fungi, screened by dioxin degrading ability. FEMS Microbiol Lett. 213:127–131.

Mori T, Kondo R. (2002b) Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol Lett. 216:223–227.

Mohammadi M, Sylvestre M. (2005) Resolving the profile of metabolites generated during oxidation of dibenzofuran and chlorodibenzofurans by the biphenyl catabolic pathway enzymes. Chem Biol. 12:835–846.

Muyzer G, de Waal EC, Uitterlinden AG. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 59:695–700.

Muyzer G, Ramsing NB. (1995) Molecular methods to study the organization of microbial communities. Wat Sci Teeh. 32:1-9.

Nam IH, Kim YM, Schmidt S, Chang YS. (2006) Biotransformation of 1,2,3-Tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1. Appl Environ Microbiol. 72:112–116.

Nevin KP, Lovley DR. (2002) Mechanisms for Fe (III) oxide reduction in sedimentary environments. Geomicrobiol J. 19:141-159.

Nishino SF, Spain JC. (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol. 59: 2520-2525.

Nogales B, Moore ERB, Abraham W-R, Timmis K N. (1999) Identification of the metabolically active members of a bacterial community in a polychlorinated biphenyl-polluted moorland soil. Environ Microbiol. 1:199-212.

Nojiri H, Ashikawa Y, Noguchi H, Nam JW, Urata M, Fujimoto Z, Uchimura H, Terada T, Nakamura S, Shimizu K, Yoshida T, Habe H, Omori T. (2005) Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1, 9a-dioxygenase. J Mol Biol 351:355–370.

Nojiri H, Omori T. (2002) Molecular bases of aerobic bacterial degradation of dioxins: involvement of angular dioxygenation. Biosci Biotechnol Biochem. 66:2001–2016.

Oberg LG, Rappe C. (1992) Biochemical formation of PCDD/Fs from chlorophenols. Chemosphere 25:49–52.

Parsons J R, Storms MCM. (1989) Biodegradation of chlorinated dibenzo
-para-dioxins in batch and continuous cultures of strain JB1. Chemo-sphere 19:1297–1308.

Parsons J R, de Bruijne J A, Weiland A R. (1998) Biodegradation pathway of 2-chlorodibenzo-p-dioxin and 2-chlorodibenzofuran in the biphenyl-utilising strain JB1. Chemosphere 37:1915–1922.

Poland A, Knutson JC. (1982) 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 22:517–552.

Qiu X, Zhonga Q, Lia M, Baia W, Lic B. (2007) Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int Biodeterior Biodegrad. 59:297–301.

Ren H, Ji S, Naeem udA, Wang D, Cui C. (2007) Degradation characteristics and metabolic pathway of 17α-ethynylestradiol by Sphingobacterium sp. JCR5. Chemosphere 66:340–346.

Roeder RA, Garber MJ, Schelling GT. (1998) Assessment of dioxins in foods from animal origins. J Anim Sci. 76:142–151.

Ron EZ, Minz D , Finkelstein NP, Rosenberg E. (1992) Interactions of bacteria with cadmium. Biodegradation 3:161-170.

Ross DE, Brantley SL, Tien M. (2009) Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol. 75:5218-5226.

Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR. (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol. 65:3056–3063.

Sanz JL, Kochling T. (2007) Molecular biology techniques used in wastewater treatment: An overview. Process Biochem. 42:119-133.

Sato A, Watanabe T, Watanabe Y, Harazono K, Fukatsu T. (2002) Screening for basidiomycetous fungi capable of degrading 2,7-dichlorodibenzo-p-dioxin. FEMS Microbiol. Lett. 213:213–217.

Schreiner G, Wiedmann T, Schimmel H, Ballschmiter K. (1997) Influence of the substitution pattern on the microbial degradation of mono- to tetrachlorinated dibenzo-p-dioxins and dibenzofurans. Chemosphere 34:1315–1331.

Selifonov SA, Slepen’kin AV, Adanin VM, Nefedova MYU, Starovoitov II. (1991) Oxidation of dibenzofuran by Pseudomonas strains harbouring plasmids of naphthalene degradation. Mikrobiologiya 60:67–71.

Shao Y, Gao S X, Huang H, Cai B C, Wang L S. (2003) Influence of soya lecithin on the biodegradation of nitrobenzene by Acinetobacter sp.. Research of Environmental Sciences 16:47-50.

Sheffield A. (1985) Sources and releases of PCDD’s and PCDF’s to the Canadian environment. Chemosphere 14:811–814.

Shiu WY, Doucette W, Gobas FAPC, Andren A, Mackay D. (1988) Physical-chemical properties of chlorinated dibenzo-p-dioxins. Environ Sci Technol. 22:651–658.

Silk PJ, Lonergan GC, Arsenault TL, Boyle CD. (1997) Evidence of natural organochlorine formation in peat bogs. Chemosphere 35:2865–2880.

Smidt H, Akkermans ADL, van der Oost J, de Vos WM. (2000) Halorespiring bacteria - molecular characterization and detection. Enzyme Microb Technol . 27:812–820.

Somerville CC, Nishino SF, Spain JC. (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol. 177:3837-3842.

Sulistyaningdyah WT, Ogawa J, Li QS, Shinkyo R, Sakaki T, Inouye K, Schmid RD, Shimizu S. (2004) Metabolism of polychlorinated dibenzo-p -dioxins by cytochrome P450BM-3 and its mutant. Biotechnol Lett. 26:1857–1860.

Takada S, Nakamura M, Matsueda T, Kondo R, Sakai K. (1996) Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordid YK-624. Appl Environ Microbiol. 62: 4323–4328.

Taira K, Hirose J, Hayashida S, Furukawa K. (1992) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. J Biol Chem. 267:4844-4853.

Topp E. (2001) A comparison of three atrazine-degrading bacteria for soil bioremediation. Biol Fertil Soils. 33:529-534.

Topp E, Xun LY, Orser CS. (1992) Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Appl Environ Microbiol. 58:502-506.

Ukisu Y, Miyadera T. (2003) Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts. Appl Catal B-Environ. 40:141–149.

Unterman R, Bedard DL, Brennan MJ, Bopp LH, Mondello FJ, Brooks RE, et al. (1988) Biological approaches for PCB degradation. In: Reducing risk from environmental chemicals through biotechnology. New York: Plenum Press.

Utkina NK, Denisenko VA, Scholok ova OV, Virovaya MV, Gerasimenko AV, Popov DY, Krasokhin VB, Popov AM. (2001) Spongiadioxins A and B, two new polybrominated dibenzo-pdioxins from an Australian marine sponge Dysidea dendyi. J Nat Prod 64:151–153.

Utkina NK, Denisenko VA, Virovaya MV, Scholokova OV, Prokofeva NG. (2002) Two new minor polybrominated dibenzo-p-dioxins from the marine sponge Dysidea dendyi. J Nat Prod 65:1213–1215.

Valli K, Wariishi H, Gold MH. (1992) Degradation of 2,7-dichlorodibenzo- para-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J. Bacteriol 174:2131–2137.

Van der Zee FP, Cervantes FJ. (2009) Impact and application of electron shuttles on the redox (bio)transformation of contaminants: a review. Biotechnol Adv 27:256-277.

Ward DM, Weller R, Bateson MM. (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.

Watanabe K, Manefield M, Lee M, Kouzuma A. (2009) Electron shuttles in biotechnology. Curr Opin Biotechnol. 20:633–641.

Wang ZY, Huang WL, Fennell DE, Peng PA. (2008) Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc. Chemosphere 71:360–368.

Wang Y, Yamazoe A, Suzuki S, Liu CT, Aono T, Oyaizu H. (2004) Isolation and characterization of dibenzofuran-degrading Comamonas sp. strains isolated from white clover roots. Curr Microbiol. 49:288–294.

West C, Harwell J H, Knox R C, Sabatini D A, Brown R E, Blaha F and Griffin C. (1997) Surfactant remediation field demonstration using a vertical circulation well. Groundwater 35:948-953.

Whitlock JP. (1999) Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol. 39:103–125.

Wilkes H, Wittich RM, Timmis KN, Fortnagel P, Francke W. (1996) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol. 62:367–371.

Wittich R M. (1998) Degradation of dioxin-like compounds by microorganisms. Appl Microbiol Biotechnol. 49:489–499.

Wittich R M, Strompl C, Moore ERB, Blasco R, Timmis KN. (1999) Interaction of Sphingomonas and Pseudomonas strains in the degradation of chlorinated dibenzofurans. J Ind Microbiol Biotechnol. 23:353–358.

Wittich RM, Wilkes H, Sinnwell V, Francke W, Fortnagel P. (1992) Metabolism of dibenzo-para-dioxin by Sphingomonas sp. strain RW1. Appl Environ Microbiol. 58:1005–1010.

Xiao J, Guo L et al. (2010). Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. J Hazard Mater. 174:818-823.

Xiao J, Guo L, Wang S, Lu Y. (2009) Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. J Hazard Mater. 174: 818–823.

Xiao C, Ning J, Yan H , Sun X, Hu J. (2009) Biodegradation of Aniline by a Newly Isolated Delftia sp. XYJ6. Chin J Chem Eng. 17:500–505.

Yamazoe A, Yagi O, Oyaizu H. (2004a) Biotransformation of fluorene, diphenyl ether, dibenzo- p-dioxin and carbazole by Janibacter sp. Biotechnol Lett. 26: 479–486.

Yamazoe A, Yagi O, Oyaizu H. (2004b) Degradation of polycyclic aro-matic hydrocarbons by a newly isolated dibenzofuran-utilizing Janibacter sp. strain YY-1. Appl Microbiol Biotechnol. 65:211–218.

Zhang S, Wan R et al. (2011a) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad. 65:1224-1228.

Zhang S, Wan R, Wang Q, Xie S. (2011b) Identification of anthracene degraders in leachate-contaminated aquifer using stable isotope probing. Int Biodeterior Biodegrad. 65:1224-1228.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.172.249
論文開放下載的時間是 校外不公開

Your IP address is 18.218.172.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code