Responsive image
博碩士論文 etd-0811113-174759 詳細資訊
Title page for etd-0811113-174759
論文名稱
Title
非極性氮化鎵與非極性氧化鋅之光學特性分析
Study of optical properties of nonpolar GaN and nonpolar ZnO
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-30
繳交日期
Date of Submission
2013-09-12
關鍵字
Keywords
時間解析螢光光譜、非極性、氮電漿功率、氮鎵比、反熱焠火、M面氮化鎵、A面氧化鋅、光致螢光光譜
Non-polar, Photoluminescence, M-Plane GaN, Negative thermal quenching, Time-Resolved Photoluminescence, N/Ga ratio, N Plasma power, A-Plane ZnO
統計
Statistics
本論文已被瀏覽 5709 次,被下載 0
The thesis/dissertation has been browsed 5709 times, has been downloaded 0 times.
中文摘要
本研究利用摻鈦藍寶石雷射(Ti:sapphire)與單光子計數系統(TCSPC)對生長在γ-LiAlO2 (LAO)基板之雙層膜 M面氮化鎵GaN與生長在藍寶石基板之 A面氧化鋅進行光激發螢光光譜(PL)與時間解析螢光光譜(TRPL)的量測,探討在改變溫度、不同樣品成長條件以及PL偏振與樣品C軸夾角樣品之光學特性。變溫光激發螢光光譜(PL)中發現,近帶隙發光隨著溫度上升會具有紅移現象,而且在不同N/Ga Ratio與N電漿功率的GaN中,其N電漿功率越高與N/Ga比例越高,缺陷產生的螢光對整體螢光光譜的貢獻也會越高。螢光偏振方向與樣品的C軸夾角,當螢光偏振方向垂直於樣品C軸相較平行於樣品C軸來的強。而在時間解析螢光光譜(TRPL)的部分,發現載子結合放光的生命週期會隨著螢光波長的增加、溫度降低而變長,接著透過內部量子效應(IQE)以及輻射復合的關係式可以得到載子的生命期。
Abstract
We use a Ti:sapphire femtosecond laser and a Time Correlated Single Photon Counting (TCSPC) system to study optical properties and carrier relaxation of Two-step M-Plane GaN epitaxial layers grown on LiAlO2(100) by plasma-assisted molecular-beam epitaxy and a A-Plane ZnO epitaxial layers grown on M-Plane Sapphire by plasma-assisted molecular-beam epitaxy.
We change the temperature of the sample from 14 K to 300 K, the near-band-edge emission is red-shifted as temperature increase. We measured the samples of different N/Ga ratio and N plasma power. We found the defect peak will become obvious when the N/Ga ratio and N plasma power increases. Because N/Ga ratio is higher, the stacking faults will be more rich. Besides, we investigate the relationship between polarization of photoluminescence. We found the PL intensity would become stronger as the polarization of photoluminescence perpendicular to c-axis of sample. We found the lifetime of carrier recombination would increase as wavelength increase and temperature decrease.
目次 Table of Contents
目錄
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
第一章 導論 1
1.1 前言 1
1.2 非極性與極性之樣品差異性比較 2
1.3 氮化鎵和氧化鋅材料內常見的輻射躍遷 3
1.4 氮化鎵與氧化鋅材料能帶結構 5
1.5 相關文獻探討 6
第二章 基本原理介紹 13
2.1 光致螢光光譜(PL)與時間解析螢光光譜(TRPL) 13
2.2 導電帶載子非復合之能量釋放 14
2.3 電子與電洞復合之釋放能量方式 15
第三章 實驗原理與光路架設 18
3.1 Mai Tai Laser 18
3.2 TP-200B Tripler原理 18
3.3 TCSPC系統簡介 21
3.4 實驗光路架設 26
3.5 其他量測儀器原理與光學元件介紹 27
第四章 實驗結果與討論 29
4.1 樣品介紹 29
4.1.1. M-plan雙層膜GaN與A-plan ZnO 29
4.1.2. X-ray繞射結構分析 31
4.2 光致螢光光譜分析 34
4.2.1 變溫光致螢光光譜 34
4.2.2 不同成長條件雙層膜GaN變溫光致螢光光譜比較 48
4.2.3 非極性樣品之比較 52
4.3 時間解析螢光光譜分析 54
第五章 結論 65
Reference 66

圖目錄
圖1.1 a.極化效應所造成的能帶扭曲示意圖、b.無極化效應時的能帶示意圖 2
圖1.2 沿a軸成長A面樣品與沿m軸成長M面樣品、 3
圖1.3 Wurtzite氮化鎵能帶結構圖、氧化鋅能帶結構圖 6
圖1.4能階圖與躍遷選擇規則 6

圖2.1 載子在半導體內躍遷示意圖 14
圖2.2 載子復合機制 15

圖3.1 雷射脈衝寬度與重複率示意圖 18
圖3.2 雷射經非線性晶體之合頻與倍頻效應 19
圖3.3 Tripler裝置內部光路示意圖 19
圖3.4 SHG晶體二倍頻示意圖 20
圖3.5 THG晶體三倍頻示意圖 20
圖3.6 Time Plate示意圖 20
圖3.7 PicoHarp 300裝置圖 21
圖3.8 TCSPC每一個循環紀錄單一光子機率示意圖 22
圖3.9 多個循環訊號所累加的座標圖 23
圖3.10 光子計數偵測器裝置圖 25
圖3.11 Delay Box 裝置圖 25
圖3.12 實驗光路示意圖 26
圖3.13 Bragg’s scattering示意圖 27
圖3.14 Glan-Laser Polarizer與分光原理示意圖 28
圖3.15 Achromatic Depolarizer光學元件圖 28

圖4.1 雙層膜M-Plane GaN示意圖 29
圖4.2 A-Plane ZnO示意圖 30
圖4.3 M-plan 雙層膜GaN的XRD量測結果 31
圖4.4 GaN樣品SEM比較圖 32
圖4.5 樣品Rocking curve 半高寬 32
圖4.6 A-Plane ZnO(Sputter)的XRD量測結果 33
圖4.7 Sample B在螢光偏振垂直樣品C軸之變溫光致螢光光譜 34
圖4.8 Sample B在螢光偏振平行樣品C軸之變溫光致螢光光譜 34
圖4.9 FXA之Integral PL Intensity隨溫度變化關係圖 36
圖4.10 疊層缺陷示意圖 36
圖4.11 Gühne團隊所做不同偏振光致螢光光譜 36
圖4.12 光致螢光光譜螢光偏振垂直與平行樣品C軸之比較 37
圖4.13 Sample B在螢光偏振垂直樣品C軸之各峰值與溫度關係圖 38
圖4.14 Sample B在螢光偏振平行樣品C軸之各峰值與溫度關係圖 38
圖4.15 PL光譜Fitting圖 39
圖4.16 Sample A-Plane ZnO在螢光偏振垂直樣品C軸之變溫光致螢光光譜 40
圖4.17 Sample A-Plane ZnO在螢光偏振平行樣品C軸之變溫光致螢光光譜 41
圖4. 18 Sample A-Plane ZnO之各峰值與溫度關係圖 41
圖4.19 M-Plane ZnO在14K 時, E┴C (PL)光致螢光光譜 42
圖4.20 反應位能示意圖 43
圖4.21 Sample B螢光與樣品垂直C軸之D0X Arrhenius Plot圖 44
圖4.22 Sample B螢光與樣品垂直C軸之PSF Arrhenius Plot圖 44
圖4.23 Sample B螢光與樣品平行C軸之D0X Arrhenius Plot圖 44
圖4.24 Sample B螢光與樣品平行C軸之PSF Arrhenius Plot圖 45
圖4.25 Sample A-Plane ZnO(Sputter)螢光與樣品C軸垂直之Arrhenius Plot圖 45
圖4.26 Sample A-Plane ZnO(Sputter)螢光與樣品C軸平行之Arrhenius Plot圖 46
圖4.27 Sample B變溫光致螢光光譜 48
圖4.28 Sample C變溫光致螢光光譜 48
圖4.29 Sample A變溫光致螢光光譜 49
圖4.30 Sample B螢光訊號各峰值與溫度關係圖 50
圖4.31 Sample C螢光訊號各峰值與溫度關係圖 51
圖4.32 Sample A螢光訊號各峰值與溫度關係圖 51
圖4.33 Sample A-Plane ZnO 14K訊號垂直C軸時,不同螢光能量時間解析光譜 54
圖4.34 Sample A-Plane ZnO 14K訊號平行C軸時,不同螢光能量時間解析光譜 54
圖4.35 Sample A-Plane ZnO在3.48eV訊號垂直C軸時,不同溫度時間解析光譜 55
圖4.36 Sample A-Plane ZnO在3.48eV訊號平行C軸時,不同溫度時間解析光譜 55
圖4.37 TRPL訊號與雷射訊號重疊圖 56
圖4.38 Sample A-Plane ZnO在14K時,不同偏振下光子能量與載子生命週期圖 57
圖4.39 Sample A-Plane ZnO在不同溫度下,PL訊號垂直C軸之 與光子能量圖 57
圖4.40 雷射激發後,電子電動能帶狀態密度 59
圖4.41 電子電洞復合過程示意圖 59
圖4.42 內部量子效率隨溫度變化圖 60
圖4.43 PL訊號垂直樣品C軸時,D0X之τ、τr、τn隨溫度變化關係圖 61
圖4.44 PL訊號垂直樣品C軸時,FB之τ、τr、τn隨溫度變化關係圖 62
圖4.45 PL訊號垂直樣品C軸時,DAP之τ、τr、τn隨溫度變化關係圖 62
圖4.46 M-Plane GaN,14K下生命週期τ圖 63


表目錄
表1.1 文獻參考 10

表4.1 雙層膜GaN樣品成長參數 30
表4.2 A-Plane ZnO樣品成長參數 31
表4.3 Varshni’s Eq.擬合所得之參數 39
表4.4 Varshni’s Eq.擬合所得之參數 40
表4.5 GaN之活化能整理 46
表4.6 ZnO之活化能整理 47
表4.7 溫度14K時,樣品發光機制比較表 50
表4.8 Sample A GaN極化度 52
表4. 9 Sample B GaN極化度 52
表4.10 Sample C GaN極化度 53
表4.11 A-Plane ZnO(Sputter)極化度 53
表4.12 PL垂直C軸,不同溫度下各峰值之τ、τr、τnr整理表 63
表4.13 PL垂直C軸,14K下各峰值之τ、τr、τnr整理表 64
參考文獻 References
1 S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films”, Jpn. J.Appl. Phys. 31, L139-L142 (1992).
2 P.Waltereit, O.Brandt, A.Trampert, H.T.Grahn, J.Menniger, M.Ramsteiner, M.Reiche & K.H.Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nautre 406, 865 (2000) .
3 H. Morkoc and U. Ozgur, “Zinc Oxide: Fundamentals, Materials and Device Technology”, WILEY(2008).
4 J. Hecht, "Photonic frontiers: shortwave laser diodes: the quest of for practical green laser diodes", Laser focus world, Lasers & Sources.
5 K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E.Gnade,”Mechanisms behind green photoluminescence in ZnO phosphor powders”, J.Appl.Phys. 79, 7983 (1996).
6 B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett. 79, 943 (2001).
7 M. E. Levinshtein, “Properties of advanced semiconductor materials”, WILEY(2001)
8 K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, “Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN”, Appl. Phys. Lett. 71, 1996 (1997).
9 Y.J. Sun, O. Brandt, U. Jahn, T.Y. Liu, A. Trampert, “Impact of nucleation conditions on the structural and optical properties of M-plane GaN(100) grown on γ-LiAlO2”, J. Appl. Phys. 92, 5714 (2002).
10 S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, “Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy”, PHYSICAL REVIEW B 65,075202 (2002).
11 P. Misra, U. Behn, O. Brandt, and H. T. Grahn, “Polarization anisotropy in GaN films for different nonpolar orientations studied by polarized photoreflectance spectroscopy”, Appl. Phys. Lett. 88, 161920 (2006).
12 K. Jieying, Z. Rong, Z. Yong, C. Liu, X. Zili, B. Liu, “Optical Anisotropic Properties of M-Plane GaN Film Grown by Metalorganic Chemical Vapor Deposition”, JOURNAL OF RARE EARTHS 25, 356 (2007).
13 S.F.Chichibu, H.Yamaguchi, L.Zhao, M.Kubota, K.Okamoto, “Optical properties of nearly stacking-fault-free M-plane GaN homoepitaxial films grown by metal organic vapor phase epitaxy on low defect density freestanding GaN substrates”, Appl. Phys. Lett. 92, 091912 (2008).
14 H.Y. Chen, Y.C. Yang, H. W. Lin, S.C. Chang, and S. Gwo, “Polarized photoluminescence from single GaN nanorods: Effects of optical confinement”, OPTICS EXPRESS 16, 13465 (2008).
15 B. Liu, J. Y. Kong, R. Zhang, Z. L. Xie, D. Y. Fu, X. Q. Xiu, “Polarization and temperature dependence of photoluminescence of M-plane GaN grown on LiAlO2 (100) substrate”, Appl. Phys. Lett. 95, 061905 (2009).
16 Y. S. Nam, S. W. Lee, K. S. Baek, “Anisotropic optical properties of free and bound excitons in highly strained A-plane ZnO investigated with polarized photoreflectance and photoluminescence spectroscopy”, Appl. Phys. Lett. 92, 201907 (2008).
17 Y.S.Nam, S.W.Lee, K.S.Baek and S.K.Chang, "Temperature and Polarization Dependence of the Near-Band-Edge Photoluminescence in a Non-Polar ZnO Film Grown by Using Molecular Beam Epitaxy", Journal of the Korean Physical Society 53, 288 (2008).
18 C.S.Ku, H.Y.Lee, J.M.Huang, and C.M.Lin, "Epitaxial Growth of M-plane ZnO Films on (101 0) Sapphire Substrate by Atomic Layer Deposition with Interrupted Flow", Crystal Growth & Design 10, pp 1460–1463 (2010).
19 林冠廷, “氮化銦薄膜載子鬆弛之研究”, 國立中山大學物理學系研究所碩士論文.
20 曾彥智, “M-Plane GaN 時間解析螢光光譜特性之研究”, 國立高雄師範大學物理學系研究所碩士論文.
21 周武翰, “M-plane ZnO時間解析螢光光譜特性之研究”, 國立中山大學物理學系研究所碩士論文.
22 Photo Technologies, “TP-2000B fs and ps Tripler Operation Manual” , (2002).
23 M. Wahl, R. Erdmann, “Picosecond Histogram Accumulating Real-time Processor User's Manual and Technical Data”, PicoQuant GmbH, (2000).
24 王湘富, “氮化銦鎵多重量子井發光二極體之輻射結合與硒化鎂鋅薄膜之螢光光譜研究“, 國立中山大學物理學系研究所碩士論文
25 R. Krahl, A. Bulter, F. Koberling, “Performance of the Micro Photon Devices PDM 50CT SPAD detector with PicoQuant TCSPC systems”, PicoQuant GmbH (2005).
26 ORTEC, “Nanasecind Decay 425A”.
27 林麗娟, “X 光繞射原理及其應用”, 工業材料86 期(1994).
28 Thorlabs, “Glan-Laser alpha-BBO Polarizer“.
29 Thorlabs, “Achromatic Depolarizer“.
30 J.K. Tsai, I. Lo, K.L. Chuang, L.W. Tu, J.H. Huang, “Effect of N to Ga flux ratio on the GaN surface morphologies grown at high temperature by plasma-assisted molecular-beam epitaxy”, J. Appl. Phys. 95, 460 (2004).
31 J. Chen, H. Deng, H. Ji, and Y. Tian, “Effect of substrate microstructure on the misorientation of a-plane ZnO film investigated using x-ray diffraction”, J. Vac. Sci. Technol. A 29, 03A116 (2011).
32 V. Kirilyuk, P. R. Hageman, P. C. M. Christianen, and P. K. Larsen, “Optical investigation of shallow acceptor states in GaN grown by hydride vapor-phase epitaxy”, Appl. Phys. Lett. 79, 25 (2001).
33 K. Wu,H. He , Y. Lu,J. Huang,Z. Ye, “Negative thermal quenching of the 3.338 eV emission in ZnO nanorods”, Solid State Communications 152, 1757 (2012).
34 T. Gühne, Z. Bougrioua, P. Vennéguès, M. Leroux, and M. Albrecht, “Cathodoluminescence spectroscopy of epitaxial-lateral-overgrown nonpolar (1120) and semipolar (1122) GaN in relation to microstructural characterization”, J. Appl. Phys. 101, 113101 (2007).
35 R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, “Luminescence from stacking faults in gallium nitride”, Appl. Phys. Lett. 86, 021908 (2005).
36 M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, “Temperature quenching of photoluminescence intensities in undoped and doped GaN”, J. Appl. Phys. 86, 3721 (1999)
37 S. K. Tripathy, G. Xu, X. Mu, Y. J. Ding, M. Jamil, “Phonon-assisted ultraviolet anti-Stokes photoluminescence from GaN film grown on Si (111) substrate”, Appl. Phys. Lett. 93, 201107 (2008).
38 T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, “Radiative and nonradiative excitonic transitions in nonpolar (110) and polar (000) and (0001) ZnO epilayers”, Appl. Phys. Lett. 84, 1079 (2004).
39 G.T. Dang, H. Kanbe, T. Kawaharamura, and M. Taniwaki, “Pulsed laser excitation power dependence of photoluminescence peak energies in bulk ZnO“, J. Appl. Phys. 110, 083508 (2011).
40 T. Gühne, Z. Bougrioua, S. Laügt, M. Nemoz, P. Vennéguès, B. Vinter, “Band-edge photoluminescence and reflectivity of nonpolar (112¯0) and semipolar (112¯2) GaN formed by epitaxial lateral overgrowth on sapphire”, PHYSICAL REVIEW B 77, 075308 (2008).
41 K.W. Mah, E. McGlynn, J-P. Mosnier, M.O. Henry, “Photoluminescence study of GaN grown by pulsed laser deposition in nitrogen atmosphere”, Materials Science and Engineering B 82, 128 (2001)
42 C. C. Shen, C. K. Shu, H. C. Lin, J. Ou, W. K. Chen, “Photoluminescence Studies of GaN Films of Different Buffer Layer and Doping Concentration”, CHINESE JOURNAL OF PHYSICS 36, 1 (1998).
43 Kia Woon Mah B.Eng. M.Eng. ,“Characterisation of Gallium Nitride Grown by Pulsed Laser Deposition”, School of Physical Sciences Dublin City University.
44 任芳儀, “以時域解析螢光光譜方法研究氧化鋅內之超快激子動態”, 國立臺灣大學光電工程學研究所碩士論文
45 L. M. Kukreja, P. Misra, A. K. Das, J. Sartor, and H. Kalt, “Anomalous optical processes in photoluminescence from ultrasmall quantum dots of ZnO”, J. Vac. Sci. Technol. A 29, 03A120 (2011);
46 T. C. Fu, N. Newman, E. Jones, J. S. Chan, X. Liu, M. D. Rubin, N. W. Cheung, “The influence of nitrogen ion energy on the quality of GaN films grown with molecular beam epitaxy”, Journal of Electronic Materials. 24, pp 249-255 (1995).
47 W.Rieger, T.Metzger, H.Angerer, R.Dimitrov, O.Ambacher, and M.Stutzmann, “Influence of substrate‐induced biaxial compressive stress on the optical properties of thin GaN films”, Appl. Phys. Lett. 68, 970 (1996).
48 C.H. HSIEH, I. LO, M.H. GAU, Y.L. CHEN, “Self-Assembled c-Plane GaN Nanopillars on γ-LiAlO2 Substrate Grown by Plasma-Assisted Molecular-Beam Epitaxy”, Japanese Journal of Applied Physics 47, pp.891–895(2008).
49 K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, “Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN”, Appl. Phys. Lett. 71, 1996 (1997).
50 J.S.Im, A.Moritz, F.Steuber, V.Härle, F.Scholz, “Radiative carrier lifetime、momentum matrix element and hole effective mass in GaN”, Appl. Phys. Lett. 70, 631 (1997).
51 Mark Fox, “Optical properties of solids”, OXFORD, (2001).
52 Saleh BEA, “Fundamentals of Photonics”, WILEY, (2001).
53 S.M. Sze, “SEMICONDUCTOR DEVICES Physics and Technology”, WILEY, (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.221.113
論文開放下載的時間是 校外不公開

Your IP address is 52.14.221.113
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code