Responsive image
博碩士論文 etd-0811115-112622 詳細資訊
Title page for etd-0811115-112622
論文名稱
Title
東台灣蛇綠岩之洋底蝕變作用及地化特徵
The characteristic of geochemistry and ocean floor alteration of Eastern Taiwan Ophiolite
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
197
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-09-11
關鍵字
Keywords
東台灣蛇綠岩、蝕變作用、元素遷移、岩石學、礦物化學、地球化學
geochemistry, mineral chemistry, Eastern Taiwan Ophiolite, element mobility, petrography
統計
Statistics
本論文已被瀏覽 5701 次,被下載 601
The thesis/dissertation has been browsed 5701 times, has been downloaded 601 times.
中文摘要
蛇綠岩的形成紀錄著洋殼的新生、移動、隱沒與仰衝過程,其為板塊運動的重要證據,蛇綠岩的地化特徵紀錄著洋脊、島弧與熱柱等不同的構造環境,而研究其蝕變作用及次生礦物組合,則幫助我們瞭解蛇綠岩形成後的演化過程。類似的板塊運動證據也在台灣東部關山地區被發現,過去的研究普遍認為東台灣蛇綠岩經歷綠片岩至角閃岩相的洋脊軸部變質,而後又受到沸石相的離軸變質,並於南中國海擴張時混入利吉混同層中。本研究利用東台灣蛇綠岩之岩象觀察、礦物成份、全岩化學及同位素分析資料,希望能瞭解東台灣蛇綠岩之地化及礦物特徵,以及蝕變作用如何影響微量元素的遷移與分佈。
本研究的東台灣蛇綠岩樣品主要為蛇紋岩、輝長岩和玄武岩,蛇紋岩的前身為正輝橄欖岩和長石異剝橄欖岩;輝長岩可分為斜長輝長岩、透輝石輝長岩、蘇長岩、輝長岩及閃石輝長岩;玄武岩可分為玄武岩、粗粒玄武岩以及玻璃質玄武岩。蛇紋岩化長石異剝橄欖岩還受到異剝鈣榴岩化作用的疊加。輝長岩受角閃岩相變質而後又受次閃石化及異剝鈣榴岩化作用。玄武岩主要受到沸石相至綠片岩相變質作用,部分也可見普通角閃石及鎂鈉閃石產出,蝕變嚴重的嘉武南溪玄武岩,常觀察到鉀長石及方沸石脈產出。玻璃質玄武岩包含新鮮玻璃、橙玄玻璃及微晶質玄武岩三部分,並且部分區域可觀察到片水矽鈣石、方沸石及桿沸石的杏仁孔充填。
從岩象與地化分析資料顯示蝕變作用中,蛇紋岩化過程會讓橄欖石釋出Mg及Fe,並會富集Cs、Ba、Sr、Pb及Eu,而異剝鈣榴岩化發生時會有SiO2減少及CaO增加,此同時會有Rb、Th、U、Sr、Nb、Ta的虧損,並富集Ba、Eu。橙玄玻璃化過程中會虧損 SiO2、Al2O3、CaO、Na2O 及MgO虧損,與H2O、TiO2及FeO增加,並使Cs、Rb、Ba、Th、U、Nb、Ta、K及Pb產生富集。滑石取代蛇紋石的樣品,需要SiO2的參與,並且其低濃度的微量元素特徵,顯示出其原岩可能為較虧損的超基性岩。蝕變程度與元素遷移的關係顯示,鉀長石與沸石可能為主要賦存Cs、Rb、Ba、Sr元素的礦物,並且Sr及Eu與長石的蝕變有關。從尖晶石成份、微量元素與Pb同位素投圖顯示,東台灣蛇綠岩與菲律賓蛇綠岩可能有相同的來源,且形成環境可能有隱沒帶上盤型或火山島弧環境的影響。
Abstract
The formation of ophiolite recorded the processes of growth, movement, subduction, and obduction of oceanic crusts. The occurrence of ophiolite is thus an important evidence of the movement of plates. Geochemical characteristics of ophiolite recorded different tectonic environments, such as the ocean ridges, volcanic arcs and plumes for the growth of ophiolite. Study of alteration and secondary mineral assemblages of rocks in an ophiolite suite can help us to understand the evolution of ophiolite. Similar evidence of the movement of plates, the Eastern Taiwan ophiolite (ETO) was discovered in the Guanshan area of Eastern Taiwan. Previous researches suggested that the ETO went through oceanic-ridge axis metamorphism under greenschist facies to amphibolite facies conditions, and later was affected by off-axis metamorphism under zeolite facies condition. The ETO was emplaced into Lichi mélang during the expansion of the South China Sea. In this research, we studied petrography, minerals composition, whole rock composition, and isotope geochemistry of the ETO rocks in order to understand their geochemical and mineralogical characteristics, and how the alterations of ETO affected the element mobilization and redistribution.
The major rock types of the ETO samples in this research are serpentinites, gabbros and basalts. The protoliths of the serpentinites include harzburgite and wehrlite. The gabbros are classified as bytownite gabbro, diopside gabbro, hornblende gabbro, norite and gabbro. The basalts are classified into dolerite, basalt and glassy basalt. The serpentinized wehrlite was also overlapped by rodingitization. The gabbro metamorphism under amphibolite facies and then affected by uralitization and rodigitization. The basalts were mainly affected by metamorphism under zeolite facies to green schist condition, hornblende and tschermakite could also be found partially. The veins of K-feldspar and analcime are common in the seriously altered basalt samples from the south Jiawu stream. The glassy basalts could be divided into fresh glass, palagonite and microcrystalline basalt, and part of the glassy basalts contain amygdule of gyrolite, thomsonite and analcime.
The serpentinization released Mg and Fe, and enriched Cs, Ba, Sr, Pb, and Eu. The rodingitization reduced SiO2, increased CaO, meanwhile depleted Rb, Th, U, Sr, Nb, and Ta, and enriched Ba and Eu. The palagonitization depleted SiO2, Al2O3, CaO, Na2O, and MgO; increased H2O, TiO2 and FeO, and enriched Cs, Rb, Ba, Th, U, Nb, Ta, K and Pb. The serpentine replaced by talc was required the participation of SiO2 and its low concentration of rare earth element represented that the protolith was more depleted ultramafic rock. The relationship between the degree of alteration and elements mobility showed that K-feldspar and zeolite were the major minerals of hosting Cs, Rb, Ba and Sr. Besides, Eu and Sr were related with alteration of plagioclase. The plots of spinel composition, trace elements, and Pb isotopes showed that the ETO might have the same origin as Philippine ophiolite. And the tectonic environment of ETO may be affected by suprasubduction zone or volcanic arc environments.
目次 Table of Contents
論文審定書 i
公開授權書 ii
致謝 iii
中文摘要 iv
英文摘要 vi
目錄 viii
表目錄 x
圖目錄 xii
礦物符號縮寫表 xv
岩石中英對照表 xvii

第一章 前言 1
1.1 蛇綠岩經歷之蝕變作用與元素遷移 1
1.2 蛇綠岩之構造成因與地化特徵 2
1.3 台灣蛇綠岩之相關研究 3
1.4 動機與目的 5
第二章 地質背景 6
2.1 東台灣海岸山脈 6
2.1.1 利吉混同層 6
2.1.2 東台灣蛇綠岩 7
2.2 本研究採樣位置 10
第三章 研究方法 16
3.1 實驗流程 16
3.2 岩象組織觀察 17
3.2.1 岩石光薄片製作 17
3.2.2 偏光顯微鏡之岩象觀察 18
3.2.3 SEM/EDS之觀察與成份分析 18
3.3 SEM/EDS之成份分析計算 19
3.4 全岩地球化學分析 25
3.4.1 全岩主要元素分析 26
3.4.2 全岩微量元素分析 26
3.4.3 全岩Sr-Nd同位素分析 27
3.4.4 全岩Pb同位素分析 29
第四章 結果 30
4.1 岩象觀察與礦物化學成份 30
4.1.1 橄欖岩(peridotite) 30
4.1.2 輝長岩(gabbro) 32
4.1.3 玄武岩(basalt) 36
4.1.4 閃長岩(diorite)與矽化沉積岩(sedimentary rock) 39
4.2 地化結果 105
4.2.1 主要元素 105
4.2.2 微量元素 106
4.2.3 同位素 108
第五章 討論 128
5.1 變質/蝕變期次與礦物反應 129
5.2 礦物與礦物化學 135
5.3 蝕變作用與元素遷移 140
5.4 蝕變程度與元素遷移 144
5.5 東台灣蛇綠岩的來源與形成時之地體構造環境 145
第六章 結論 163
第七章 參考文獻 164
參考文獻 References
英文文獻
Abu EI-Ela, F. F.(1999)Neoproterozoic tholeiitic arc plutonism: Petrology of EI-Aradiya gabbroic intrusion, Eastern Desert, Egypt. Journal of African Earth Sciences, 28(3), 721-741.
Agranier, A., Lee, C. T. A., Li, Z. X. A. and Leeman, W. P.(2007)Fluid-mobile element budgets in serpentinized oceanic lithospheric mantle: insights from B, As, Li, Pb, PGEs and Os isotopes in the Feather River Ophiolite, California. Chemical Geology, 245, 230-241.
Attoh, K., Evans, M. J. and Bickford, M. E.(2006)Geochemistry of an ultramafic-rodingite rock association in the Paleoproterozoic Dixcove greenstone belt, southwestern Ghana. Journal of African Earth Sciences, 45, 333-346.
Austrheim, H. and Prestvik, T.(2008)Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos, 104, 177-198.
Auzende, A. L., Devouard, B., Guillot, S., Daniel, I., Baronnet, A. and Lardeaux, J. M. (2002)Serpentinites from Central Cuba: petrology and HRTEM study. European Journal of Mineralogy, 14, 905–914.
Bach, W. and Klein, F.(2009)The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos, 112, 103-117.
Barnes, I. and O’Neil, J.R.(1969)The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geological Society of America Bulletin, 80, 1947-1960.
Bédard, E., Hébert, R., Guilmette, C., Lesage, G., Wang C. S. and Dostal, J.(2009)Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc–back-arc origin. Lithos, 113, 48-67.
Biq, C.(1971)Comparison of mélange tectonics in Taiwan and in some other mountain belts. Petroleum Geology of Taiwan, 9, 79-106.
Biq, C.(1976)A tale of two orogens. Bulletin of the Geological Survey of Taiwan, 25, 149-166.
Castillo, P. and Batiza, R.(1989)Strontium. neodymium and lead isotope constraints on near-ridge seamount production beneath the South Atlantic. Nature 342, 262-265.
Chang, C. P., Angelier, J., Huang, C. Y. and Liu, C. S.(2001)Structural evolution and significance of a melange in a collision belt: the Lichi Melange and the Taiwan arc-continent collision. Geological Magazine, 138(6), 633-651.
Choi, S. H., Shervais, J. W. and Mukasa, S. B.(2008)Suprasubduction and abyssal mantle peridotites of the coast range ophiolite, California. Contributions to Mineralogy and Petrology, 156(5), 551-576.
Chou, C. L., Lo, H. J., Chen J. H. and Juan, V. C.(1978)Rare earth element and isotopic geochemistry of Kuanshan igneous complex, Taiwan. Proceedings of the Geological Society of China, 21, 13-24.
Coleman, R.G.(1967)Low-temperature reaction zones and alpine ultramafic rocks of California, Oregon and Washington. U.S. Geological Survey Bulletin, 1247, 1-49.
Correns, C. W.(1930)Ȕber einen Basalt vom Boden des Atlantischen Ozeans und seine Zersetzungsrinde. Chemie der Erde, 5, 76-86.
Crawford, A. J.(1989)Classification, petrogenesis and tectonic setting of boninites. In: Crawford, A. J., eds., Boninites and Related Rocks. University Press, Cambridge, London, 1–49.
Chung, S. L. and Sun, S. S.(1992)A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109, 133-145.
Dai, J. G., Wang, C. S., Hébert, R., Santosh, M., Li, Y. L. and Xu, J. Y.(2011)Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288, 133–148.
Danyushevsky, L.V., Carroll, M.R. and Falloon, T.J.(1997)Origin of high-An plagioclase in Tongan high-Ca boninites: implications for plagioclase-melt equilibrium at low P(H2O). The Canadian Mineralogist, 35, 313-326.
Daux, V., Crovisie,r J. L., Hemond, C. and Petit, J. C.(1994)Geochemical evolution of basaltic rocks subjected to weathering: fate of the major elements, rare earth elements, and thorium. Geochimica et Cosmochimica Acta, 58, 4941-4954
Deer, W. A., Howie, R. A. and Zussman, J.(1992)An introduction to the rock-forming minerals(second edition). Longman, London, 696p.
Deschamps, F., Godard, M., Guillot, S. and Hattori, K.(2013)Geochemistry of subduction zone serpentinites: a review. Lithos , 178, 96-127.
Deschamps, F., Guillot, S., Godard, M., Andreani, M. and Hattori, K.(2011)Serpentinites act as sponges for fluid-mobile elements in abyssal and subduction zone environments. Terra Nova, 23, 171–178.
Deschamps, F., Guillot, S., Godard, M., Chauvel, C., Andreani, M. and Hattori, K.(2010)In situ characterization of serpentinites from forearc mantle wedges: timing of serpentinization and behavior of fluid-mobile elements in subduction zones. Chemical Geology, 269, 262-277.
Dick, H. J. B. and Bullen, T.(1984)Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86, 54-76.
Dilek, Y. and Furnes, H.(2009)Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems. Lithos, 113, 1–20.
Dilek, Y. and Furnes, H.(2011)Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123 (3/4), 387-411.
D’orazio, M., Boschi, C. and Brunelli, D.(2004)Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. European Journal of Mineralogy, 16, 73-83.
Dungan, M. A.(1979)Bastite pseudomorphs after orthopyroxene, clinopyroxene and tremolite. Canadian Mineralogist, 17, 729-740
Encarnación, J., Rowell, A.J. and Grunow, A.(1999)A U–Pb age for the Cambrian Taylor Formation, Antarctica: implications for the Cambrian time scale. Journal of Geology, 107, 497-504.
Eslami, A., Koepke, J. and Esteban, J. J.(2013)Mineralogy and petrology of rodingites from the Nain ophiolite(Central Iran). Geogaceta, 53, 73-76.
Ferrando, S., Frezzotti, M.L., Orione, P., Conte, R.C. and Compagnoni, R.(2010)Late-Alpine rodingitization in the Bellecombe meta-ophiolites(Aosta Valley, Italian Western Alps): evidence from mineral assemblages and serpentinization-derived H2-bearing brine. International Geology Review, 52, 1220-1243
Fisk, M. R.(1984)Depths and temperatures of mid-ocean-ridge magma chambers and the composition of their source magmas. Geological Society, London, Special Publications, 13, 17-23.
Fodor, R. V. and Galar, P.(1997)A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of Gabbroic and Ultramafic Xenoliths. Journak of Petrology, 38(5), 581-624.
Frolova, J., Ladygin, V., Franzson, H., Sigurdsson, O., Stefansson, V. and Sustrov, V. (2005)Petrophysical prop-erties of fresh to mildly altered hyaloclastite tuffs. Proceedings World Geothermal Congress, Antalya, Turkey, 15p.
Frost, B. R. and Beard, J. S.(2007)On Silica Activity and Serpentinization. Journak of Petrology, 48, 1351-1368.
Fukuyama, M., Ogasawara, M., Dunkley, D. J., Wang, K. L., Lee, D. C., Hokada, T., Maki, K., Hirata, T. and Kon, Y.(2014)The formation of rodingite in the Nagasaki metamorphic rocks at Nomo Peninsula, Kyushu, Japan – Zircon U–Pb and Hf isotopes and trace element evidence. Island Arc, 23(4), 281-298.
Furnes, H.(1978)Element mobility during palagonitization of a subglacial hyaloclastite in Iceland. Chemical Geology, 22, 249-264.
Furnes, H., de Wit, M., Staudigel, H., Rosing, M. and Muehlanbachs, K.(2007)A vestige of Earth’s oldest ophiolite. Science, 315, 1704-1707.
Furnes, H., Rosing, M., Dilek, Y. and de Wit, M.(2009)Isua supracrustal belt (Greenland)—A vestige of a 3.8 Ga suprasubduction zone ophiolite, and the implications for Archean geology. Lithos, 113, 115-132.
Furnes, H., Dilek, Y. and de Wit, M.(2015)Precambrian greenstone sequences represent different ophiolite types. Gondwana Research, 27. 649-685
González-Mancera, G., Ortega-Gutiérrez, F., Proenza, A. P. and Atudorei, V.(2009)Petrology and geochemistry of Tehuitzingo serpentinites(Acatlán Complex, SW Mexico). Boletín de la Sociedad Geológica Mexicana, 61(3), 419-435.
Haggerty, S. E.(1995)Oxide mineralogy of the upper mantle. Review in Mineralogy, 25, 355-404.
Hall, R., Ali, J. R. Anderson, C. D. and Baker, S. J.(1995)Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251, 229-250.
Hattori, K. H. and Guillot, S.(2007)Geochemical character of serpentinites associated with highto ultrahigh-pressure metamorphic rocks in the Alps, Cuba, and the Himalayas: recycling of elements in subduction zones. Geochemistry, Geophysics, Geosystems, 8.
Hatzipanagiotou, K., Tsikouras, B., Migiros, G., Gartzos, E. and Serelis, K.(2003)Origin of rodingites in ultramafic rocks from Lesvos island(NE Aegean, Greece). Ofioliti, 28, 13–23.
Hickey-Vargas, R.(1998)Origin of the Indian Ocean-type isotopic signature in basalts from the West Philippine Sea plate spreading centers: an assessment of local vs large scale processes. Journal of Geophysical Research, 103, 20963-20979.
Hsu, T. L.(1956)Geology of the Coastal Range, eastern Taiwan. Bulletin of the Geological Survey Taiwan, 8, 39-64.
Huang, C. Y., Chien, C. W., Yao, B. and Chang, C. P.(2008)The Lichi Mélange: A collision mélange formation along early arcward backthrusts during forearc basin closure, Taiwan arc-continent collision. Geological Society of America Special Papers, 436, 127-154.
Irvine, T.N., and Baragar, W.R.A.(1971)A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8, 523-548.
Jahn, B. M.(1986)Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contributions To Mineralogy and Petrology, 92, 194-206.
Jian, P., Kröner, A., Windley, B.F., Shi, Y., Zhang, F., Miao, L., Tomurhuu, D., Zhang, W. and Liu, D.(2010)Zircon ages of the Bayankhongor ophiolite melange and associated rocks: time constraints on Neoproterozoic to Cambrian accretionary and collisional orogenesis in Central Mongolia. Precambrian Research, 177, 162-180.
John, T., Scherer, E. E., Schenk, V., Herms, P., Halama, R. and Garbe-Schönberg, D(2010) Subducted seamounts in an eclogite-facies ophiolite sequence: the Andean Raspas Complex, SW Ecuador. Contributions to Mineralogy and Petrology, 159, 265–284.
Juan, V. C., Tai, H. and Chang, F. H.(1953)Taiwanite, a new basaltic glassy rock of eastern Coastal Range, Taiwan and its bearing on the parental magma-type, Acta Geologica Taiwanica, 5, 1-25.
Juan, V. C., Chang, F. H. and Hsu, L. C.(1959)The gabbroic rocks of Hutoushan and Kuanshan, east Taiwan, Proceedings of the Geological Society of China, 2, 5-32.
Juan, V. C.(1960)On the parental magma-type of the petrographic province of eastern Taiwan, The 21st International Geological Congress, 13, 32-93.
Juan, V. C. and Wang, C. M.(1960)Peridotites of Kuanshan, east Taiwan, Acta Geologica Taiwanica, 8, 1-12.
Juan, V. C., Hsu, L. C. and Fuh, T. M.(1960)On the occurrence of gabbro dike in the vicinity of Taitung, Taiwan, Proceedings of the Geological Society of China, 3, 105-107.
Juan V. C. and Hsu L. C.(1962)Dolerites from Likiliki and Kuanshan, Taitung, eastern Taiwan. Proceedings of the Geological Society of China, 5, 65-79.
Juan, V. C.(1964)East Taiwan petrographic province, Proceedings of the Geological Society of China, 7, 3-20.
Juan, V. C. and Lo, H. J.(1966)Thermal Dehydration Reactions of Natural Thomsonite From Taiwanite, Taitung, Taiwan. Proceedings of the geological society of china, 9, 20-30.
Juan, V. C.(1967)Problem of mode of occurrence of dolerite and taiwanite in the light of rock association, Proceedings of the geological society of china, 10, 40-52.
Juan, V. C., Lo, H. J.and Chen, C. H.(1976)Crystallization-differentiation of taiwanite: Proceedings of the geological society of china, 19, 87-97.
Juan, V. C., Lo, H. J.and Chen, C. H.(1978)Petrochemistry and origin of taiwanite and dolerite East Taiwan: Studies and Essays in Commemoration of the Golden Jubilee of Academia Sinica, 1, 77-101.
Juan, V. C.(1985)The study of igneous rock in Taiwan: viewed in perspective. Acta Geologica Taiwanica, 23, 1-8.
Keshavarzi, R., Esmaili, D., Kahkhaei, M. R., Mokhtari, M. A. A. and Jabari, R.(2014)Petrology, Geochemistry and Tectonomagmatic Setting of Neshveh Intrusion(NW Saveh). Open Journal of Geology, 4, 177-189.
Kostyuk, E. A. and Sobolev, V. S.(1969)Paragenetic types of calciferous amphiboles of metamorphic rocks. Lithos, 2(1), 67-81.
Kohut, E. J. and Nielsen, R. L.(2003)Low-pressure phase equilibria of anhydrous anorthite-bearing mafic magmas. Geochemistry, Geophysics, Geosystems, 4(7), 1-27.
Kodolánya, J., Pettke, T., Spandler, C., Kamber, B.S. and Gméling, K.(2012)Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones. Journal of Petrology, 53, 235-270.
Koutsovitis, P., Magganas, A., Pomonis, P. and Ntaflos, T.(2013)Subduction-related rodingites from East Othris, Greece: Mineral reactions and physicochemical conditions of formation. Lithos, 144–145, 177-193.
Lapierre, H., Bosch, D., Dupuis, V., Polvé, M., Maury, R.C., Hernandez, J., Monié, P., Yéghicheyan, D., Jaillard, E., Tardy, M., Mercier de Lépinay, B., Mamberti, M., Desmet, A., Keller, F. and Sénebier, F.(2000)Multiple plume events in the genesis of the peri-Caribbean Cretaceous oceanic plateau province. Journal of Geophysical Research., 105, 8403–8421.
LeBas, M. J., LeMaitre, R. W., Streckeisen, A. and Zanettin, B.(2013)A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-750.
Li, X. P., Rahn, M. and Bucher, K.(2004)Metamorphic processes in rodingites of the Zermatt– Saas ophiolites: International Geology Review, 46, 28-51.
Li, Z. X. A. and Lee, C. T. A(2006)Geochemical investigation of serpentinized oceanic lithospheric mantle in the Feather River Ophiolite, California: implications for the recycling rate of water by subduction. Chemical Geology, 235, 161–185.
Liou, J. G.(1979)Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite. American Mineralogist, 64, 1-14.
Liou, J. G. and Ernst, W. G.(1979)Oceanic Ridge Metamorphism of the East Taiwan Ophiolite. Contributions to Mineralogy and Petrology, 68, 335-348.
Liou, J. G., Lan, C. Y., Suppe J. and Ernst, W. G.(1977)The East Taiwan Ophiolite: its occurrence, petrology, metamorphism and tectonic setting. Mining Research and Service Organization Special Report, 1, 212.
Meijer, A. (1976) Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system. Geological Society of America Bulletin, 87, 1358-1369.
Mevel, C. and Stamoudi, C.(1996)Hydrothermal alteration of the upper mantle section at Hess deep. Proceedings of Ocean Drilling Programme Scientific Results, 147, 293-309.
Miyashiro, A., Shido, F. and Ewing, M.(1971)Metamorphism in the mid-Atlantic ridge near 24°and 30° N. Philosophical Transactions of the Royal Society A, 268, 589-603.
Montanini, A., Tribuzio, R. and Vernia, L.(2008)Petrogenesis of basalts and gabbros from an ancient continenteocean transition(External Liguride ophiolites, Northern Italy). Lithos, 101, 453-479.
Morad, S., El-Ghali, M. A. K., Caja, M. A., Sirat, M., Al-Ramadan, K. and Mansurbeg, H.(2010)Hydrothermal alteration of plagioclase in granitic rocks from Proterozoic basement of SE Sweden. Geological Journal, 45(1), 212.
Muir, I. D. and Tilley, C. E.(1964)Basalts from the northem part of the Rift Zone of the Mid-Atlantic Ridge. Journal of Petrology, 5, 409-434.
Mysen, B. O. and Kushiro, I.(1977)Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. American Mineralogist, 62, 843-865.
Niu, Y.(2004)Bulk-rock major and trace-element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45, 2423–2458.
Nkoumbou, C., Njopwouo, D., Villiéras, F., Njoya, A., Yonta Ngoune, C., Ngo Ndjock, L., Tchoua, F. M. and Yvon, J.(2006)Talc indices from Boumnyebel (central Cameroon), physico-chemical characteristics and geochemistry, Journal of African Earth Sciences, 45, 61-73.
Oba, T.(1978)Phase Relationship of Ca2 Mg3 Al2 Si6 Al2 O22 (OH)2 - Ca2 Mg3 Fe23+ Si6 Al2 O22 (OH)2 Join at High Temperature and High Pressure : The Stability of Tschermakite. Journal of the Faculty of Science, Hokkaido University, 18(3), 339-350.
O'Hanley, D.S., Schandl, E.S. and Wicks, F.J.(1992)The origin of rodingites from Cassiar, British Columbia, and their use to estimate T and P(H2O)during serpentinization. Geochimica et Cosmochimica Acta, 56, 97–108.
Page, B. M. and Suppe, J.(1981)The Pliocene Lichi melange of Taiwan: its plate tectonic and olistostromal origin. American Journal of Science, 281, 193-227.
Paulick, H., Bach, W., Godard, M., De Hoog, J. C. M., Suhr, G. and Harvey, J.(2006) Geochemistry of abyssal peridotites(Mid-Atlantic Ridge, 15°20’N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179–210.
Peacock, S. M. and Hyndman, R. D.(1999)Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophysical Research Letters, 26, 2517-2520.
Pearce, J. A.(2003)Supra-subduction zone ophiolites: The search for modern analogues, in Dilek, Y., and Newcomb, S., eds., Ophiolite Concept and the Evolution of Geological Thought: Geological Society of America Special Paper, 373, 269–293.
Pearce, J. A. and Cann, J. R.(1973)Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19, 290–300.
Pearce, J. A., Lippard, S. J. and Roberts, S.(1984)Characteristics and tectonic signifi cance of supra-subduction zone ophiolites, in Kokelaar, B.P., and Howells, M.F., eds., Marginal Basin Geology: Volcanic and Associated Sedimentary and Tectonic Processes in Modern and Ancient Marginal Basins: Geological Society of London Special Publication 16, p. 77–94.
Perrillat, J.-P., Daniel, I., Koga, K.T., Reynard, B., Cardon, H. and Crichton, W.A. (2005)Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth and Planetary Science Letters, 236, 899-913.
Piispanen, R. and Alapieti, T.(1977)Uralitization — an example from Kuusamo, Finland. Mineralium Deposita, 19(2), 105-111.
Polat, A., Herzberg, C., Munker, C., Rodgers, R., Kusky, T., Li, J. H., Fryer, B. and Delaney, J.(2006)Geochemical and petrological evidence for a suprasubduction zone origin of Neoarchean (ca. 2.5 Ga) peridotites, central orogenic belt, North China craton. Geological Society of America Bulletin, 118, 771-784.
Révillon, S., Arndt, N. T., Chauvel, C. and Hallot, E.(2000)Geochemical study of Ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia:the plumbing system of oceanic plateau. 41, 1127-1153.
Ross, G. J. and Kodama, H.(1976)Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation. Clays and Clay Minerals, 24, 183-190.
Rüpke, L. H., Morgan, J. P., Hort, M. and Connolly, J. A. D.(2004)Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters, 223, 17–34.
Savov, I. P., Ryan, J. G. and D'Antonio, M.(2005)Geochemistry of serpentinized peridotites from the Mariana forearc Conical seamounts, ODP Leg 125: implications for the elemental recyclng at subduction zones. In: Kelley, K., Mattie, P., eds., Geochemistry, Geophysics, Geosystems, 6.
Savov, I. P., Ryan, J. G., D'Antonio, M. and Fryer, P.(2007)Shallow slab fluid release across and along the Mariana arc-basin system: insights from geochemistry of serpentinized peridotites from the Mariana fore arc. Journal of Geophysical Research, 112.
Schandl, E. S., O'Hanley, D. S. and Wicks, F. J.(1989)Rodingites in serpentinized ultramafic rocks of the Abitibi greenstone belt, Ontario. The Canadian Mineralogist 27, 579-591.
Schwartz, S., Guillot, S., Reynard, B., Lafay, R., Debret, B., Nicollet, C., Lanari, P. and Auzende, A. L.(2013)Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos, 178, 197-210.
Seyfried Jr., W. E., Foustoukos, D. I. and Fu, Q.(2007)Redox evolution and mass transfer during serpentinization; an experimental and theoretical study at 200C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochimica et Cosmochimica Acta, 71, 3872-3886.
Shervais, J. W.(2001)Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2, 2000GC000080.
Sisson, T.W. and Grove, T.L.(1993)Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113, 143-166.
Spear, F. S.(1981)An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science, 281, 697-734.
Stroncik, N. A. and Schmincke, H. U.(2002)Palagonite – a review. International Journal of Earth Sciences, 91, 680-697.
Sun, S.S. and McDonough, W.F.(1989)Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geol. Soc. London, London, 313–345
Suppe, J., Liou, J. G. and Ernst, W. G.(1981)Paleogeographic origin of the Miocene East Taiwan Ophiolite. American Journal of Science, 281, 228-246.
Tatsumoto, M.(1978)Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth and Planetary Science Letters, 38, 63-87.
Tripathi, P., Pandey, O. P., Rao, M. V. M. S. and Reddy, G. K.(2012)Elastic properties of amphibolite and granulite facies mid-crustal basement rocks of the Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharastra(India)and mantle metasomatism. Tectonophysics, 554-557, 159-168.
Tsikouras, B., Karipi, S. and Hatzipanagiotou, K.(2013)Evolution of rodingites along stratigraphic depth in the Iti and Kallidromon ophiolites (Central Greece). Lithos, 175-176, 16-29.
Wakabayashi, J., Ghatak, A. and Basu, A. R.(2010)Suprasubduction-zone ophiolite generation, emplacement, and initiation of subduction: A perspective from geochemistry, metamorphism, geochronology, and regional geology. Geological Society of America Bulletin, 122(9-10), 1548-1568.
Whattam, S. A., Cho, M. and Smith, I. E. M.(2011)Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos , 127, 599-618.
White, W. M. and Patchett, J.(1984)Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters, 67, 167-185.
Wood, D. A., Gibson, I. L. and Thompson, R. N.(1976)Element Mobility during Zeolite Facies Metamorphism of the Tertiary Basalts of Eastern Iceland. Contributions to Mineralogy and Petrology, 55, 241-254.
Xia, X., Song, S. and Niu, Y.(2011)Tholeiite–Boninite terrane in the North Qilian suture zone: implications for subduction initiation and back-arc basin development. Chemical Geology, 328, 259-277.
Yellappa, T., Santosh, M., Chetty, T. R. K., Kwon, S., Park, C., Nagesh, P., Mohanty, D.P. and Venkatasivappa, V.(2012)A Neorchean dismembered ophiolite complex from southern India: geochemical and geochronological constraints on its suprasubduction origin. Gondwana Research , 21, 246-265.
Yumul Jr., G. P., Dimalanta, C. B. and Jumawan, F. T.(2000)Geology of the southern Zambales Ophiolite Complex, Luzon, Philippines. Island Arc, 9, 542-555.
Zhou, Z. and Fyfe, W. S.(1989)Palagonitiztion of basaltic glass from DSDP Site 335, Leg 37: Textures, chemical composition, and mechanism of formation. American Mineralogis, 74, 1045-1053.
Zhou, M. F., Robinson, P. T., Malpas, J., Edwards, S. J. and Qi, L.(2005)REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46, 615–639.

中文文獻
陳文山(1988)台灣海岸山脈沈積盆地之演化及其在地體構造上之意義。國立台灣大學地質研究所博士論文,304頁。
陳文山、王源(1996)臺灣東部海岸山脈地質。經濟部中央地質調查所,台灣地質系列第七號,101頁。
鄧屬予(1981)淺論利吉層的成因及其在大地構造上的意義。地質,第3卷,第51-61頁。
鄧屬予(2007)台灣第四紀大地構造。經濟部中央地質調查所特刊,第18號,第1-24頁。
藍晶瑩(1977)東台灣之蛇綠岩系研究簡介。工業技術礦業研究所,第211-215頁。
劉忠光、藍晶瑩、蘇強、恩斯特(1977)東台灣之蛇綠岩系(其產狀、岩石學、變質作用及構造背景之研究)。礦業研究所特刊,第一號,212頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code