Responsive image
博碩士論文 etd-0811117-110855 詳細資訊
Title page for etd-0811117-110855
論文名稱
Title
氧化鋅/氧化鉬超晶格薄膜 : 原子層沉積法成長及其物理特性之量測
ZnO/MoO3 Superlattice Thin Films : Growth by Atomic Layer Deposition and Characterizations of Physical Properties
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
38
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-20
繳交日期
Date of Submission
2017-09-14
關鍵字
Keywords
磁矩、熱活化能、原子層沉積、氧化鋅、超晶格、氧化鉬
ALD, ZnO, MoO3, Superlattices, Thermal activation energy, Magnetic moment.
統計
Statistics
本論文已被瀏覽 5680 次,被下載 0
The thesis/dissertation has been browsed 5680 times, has been downloaded 0 times.
中文摘要
ZnO / MoO3超晶格結構在177℃下利用原子層沉積系統(Atomic Layer Deposition)沉積在a面藍寶石基板上。接著分別在磁場為0Tesla, 3Tesla, 6Tesla與9Tesla時量測溫度範圍為15K~300K時樣品的電阻(RT),並使用熱活化能公式進行計算與分析其電性結果。根據電性模擬結果表示,在氧化鋅與氧化鉬超晶格結構中存在著四個中間能隙,每個能隙在每個溫度下的貢獻度都可以被描述。此外,這些中間能隙是由於磁矩而和磁場有關,遵循公式為E(B)=E(0)-mB。另一方面,也可利用熱熱活化能量能公式計算出Log(T)-Log(μ)。在0磁場下,遷移率對溫度的關係呈現出兩個不同的斜率且在50K到300K之間其斜率和T-1.44相關¬,這是由於晶格散射的關係。最後,分別在300K、200K、150K、100K、50K、10K下量測MR曲線。10K下的MR是正磁阻且與磁場平方有關,而較高溫度下的MR呈現雜訊的情況,是由於高溫下四個能階在導電上都有貢獻,而E4貢獻正磁阻,E1、E2、E3貢獻了負磁阻導致互相抵銷的情況發生。
Abstract
Superlattices of ZnO/MoO3 have been prepared by atomic layer deposition (ALD) on a-oriented sapphire substrates at 177 oC. The electrical properties were studied via measurement of resistivity as a function of temperature (T) from T=15 K to 300 K and magnetic field (B). The superlattice structures comprise multiple periods of ZnO/MoO3 bilayers that are hoped to incur new physical properties not seen in their pristine form. Data analysis by brute-force data fitting based on thermally activated processes of band conduction resulted largely in four midgap states responsible for the measured functional dependence of resistivity on T and B. Except for the shallowest state that is at 5 meV from the band edge, the other three states consistently follow the linear relation of E(B)=E(0)-mB over the whole studied temperature range, hence demonstrate negative magnetoresistance. The shallowest state, follows a positive B-square dependence in revelation of a cyclotron effect for free carriers moving along a spiraling path. The countering magnetoresistive behaviors make the magnetoresistance exceedingly small and difficult to measure. Analysis of the charge carrier mobilities, according to the simple power law of temperature, suggest that impurity charge scattering and lattice vibration scattering mechanisms are both at play.
目次 Table of Contents
論文審定書 i
Acknowledgment ii
摘要 iii
Abstract iv
Figures vi
Tables vii
I. Introduction 1
II. Experimental details: Measurements and Analysis 4
III. Result and discussion 5
IV. Conclusion 15
References 17
Appendices 22
A.Suitable Temperature and Substrate for ZnO and MoO3 22
B.Initial Layer of ZnO/MoO3 superlattices 23
C.Structural properties of ZnO/MoO3 superlattices 24
D.Optical properties 26
E.Sputtered ZnO+SLs 27
F.Chemical formula of MoO3 form from different precursor 28
G.Database related to the crystal structures 29
參考文獻 References
[1] Weng, J., Zhang, Y., Han, G., Zhang, Y., Xu, L., Xu, J., Huang, X. and Chen, K., Electrochemical deposition and characterization of wide band semiconductor ZnO thin film Thin Solid Films 478, 25–9 (2005)
[2] Wang, J., and Gao, L., Hydrothermal synthesis and photoluminescence properties of zno nanowires Solid State Commun. 132, 269–71 (2004)
[3] Hvam, J.M., Exciton Interaction in Photoluminescence from ZnO Phys. Status Solidi 63, 511–7 (1974)
[4] Hvam, J.M., Exciton-exciton interaction and laser emission in high-purity ZnO Solid State Commun. 12, 95–7 (1973)
[5] Shan, F.K., Liu, G.X., Lee, W.J., and Shin, B.C., The role of oxygen vacancies in epitaxial-deposited ZnO thin films J. Appl. Phys. 101 (2007)
[6] Lin, B., Fu, Z., and Jia, Y., Green luminescent center in undoped zinc oxide films deposited on silicon substrates Appl. Phys. Lett. 79, 943–5 (2001)
[7] Navas, I., Vinodkumar, R., Lethy, K.J., Detty, A.P., Ganesan, V., Sathe, V., and Mahadevan Pillai, V.P., Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing J. Phys. D. Appl. Phys. 42, 175305 (2009)
[8] Illyaskutty, N., Sreedhar, S., Sanal., Kumar, G., Kohler, H., Schwotzer, M., Natzeck, C., and Pillai, V.P.M., Alteration of architecture of MoO 3 nanostructures on arbitrary substrates: growth kinetics, spectroscopic and gas sensing properties Nanoscale 6, 13882–94 (2014)
[9] Tordjman, M., Saguy, C., Bolker, A., and Kalish, R., Superior Surface Transfer Doping of Diamond with MoO3 Adv. Mater. Interfaces 1, 1–6 (2014)
[10] Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review RSC Adv. 5, 75500–18 (2015)
[11] Horowitz, G., Hajlaoui, M.E., and Hajlaoui, R., Temperature and gate voltage dependence of hole mobility in polycrystalline oligothiophene thin film transistors J. Appl. Phys. 87, 4456 (2000).
[12] Zu, P., Tang, Z. K., Wong, G. K. L., Kawasaki, M., Ohtomo, a., Koinuma, H., and Segawa, Y., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature Solid State Commun. 103, 459–63 (1997)
[13] Subbarayudu, S., Madhavi, V., and Uthanna, S., Growth of Films by RF Magnetron Sputtering: Studies on the Structural, Optical, and Electrochromic Properties ISRN Condens. Matter Phys. 2013, 1–9 (2013)
[14] Gokulakrishnan, V., Parthiban, S., Jeganathan, K., and Ramamurthi, K., Investigation of Molybdenum Doped ZnO Thin Films Prepared by Spray Pyrolysis Technique Ferroelectrics 423, 126–34 (2011)
[15] Huang, P.R., He, Y., Cao, C. and Lu, Z.H., Impact of lattice distortion and electron doping on α-MoO3 electronic structure Sci. Rep. 4, 7131 (2014)
[16] Klinbumrung, A., Thongtem, T., and Thongtem, S., Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process J. Nanomater (2012).
[17] Pardo, A., and Torres, J., Substrate and annealing temperature effects on the crystallographic and optical properties of MoO3 thin films prepared by laser assisted evaporation Thin Solid Films 520, 1709–17 (2012)
[18] Lin,S. Y., Chen, Y. C., Wang, C. M., Hsieh, P. T. and Shih, S. C., Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films Appl. Surf. Sci. 255, 3868–74 (2009)
[19] Ramana, C. V., and Julien, C. M., Chemical and electrochemical properties of molybdenum oxide thin films prepared by reactive pulsed-laser assisted deposition Chem. Phys. Lett. 428, 114–8 (2006)
[20] Ramana, C. V., Atuchin, V. V., Groult, H., and Julien, C. M., Electrochemical properties of sputter-deposited MoO3 films in lithium microbatteries J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 30, 04D105 (2012)
[21] Nirupama, V., Sekhar, M. C., Subramanyam, T. K., and Uthanna, S., Structural and electrical characterization of magnetron sputtered MoO3 thin films J. Phys. Conf. Ser. 208, 12101 (2010)
[22] Subbarayudu, S., Madhavi, V., and Uthanna, S., Post-deposition annealing controlled structural and optical properties of RF magnetron sputtered MoO3 films Adv. Mater. Lett. 4, 637–42 (2013)
[23] Imawan, C., Steffes, H., Solzbacher, F., and Obermeier, E., A new preparation method for sputtered MoO3 multilayers for the application in gas sensors Sensors Actuators, B Chem. 78, 119–25 (2001)
[24] Nirupama, V., Chandrasekhar, M., and Radhika, P., Characterization of molybdenum oxide films prepared by bias magnetron sputtering J. Optoelectron. Adv. Mater. 11, 320–5 (2009)
[25] Cho, M. W., Chang, J. H., Saeki, S., Wang, S. Q., and Yao, T., Characteristics of BeTe films grown by molecular beam epitaxy J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 18, 457 (2000)
[26] Juppo, M., Ritala, M., and Leskelä, M., Deposition of copper thin films by an alternate supply of CuCl and Zn J. Vac. Sci. Technol. A 15, 2330–3 (1997)
[27] Nirupama,V., Gunasekhar, K. R., Sreedhar, B., and Uthanna, S. Effect of oxygen partial pressure on the structural and optical properties of dc reactive magnetron sputtered molybdenum oxide films Curr. Appl. Phys. 10, 272–8 (2010)
[28] Liu, C., Li, Z. and Zhang, Z., Growth of [010] oriented α-MoO3 nanorods by pulsed electron beam deposition Appl. Phys. Lett. 99, 3–5 (2011)
[29] Bertuch, A., Sundaram, G., Saly, M., Moser, D., and Kanjolia, R., Atomic layer deposition of molybdenum oxide using bis(tert-butylimido)bis(dimethylamido) molybdenum J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 32, 01A119 (2014)
[30] Klepper, K. B., Nilsen, O., and Fjellvåg, H., Growth of thin films of Co3O4 by atomic layer deposition Thin Solid Films 515, 7772–81 (2007)
[31] Ramana, C. V., Atuchin, V. V., Kesler, V. G., Kochubey, V., Pokrovsky, L. D., Shutthanandan, V., Becker, U., and Ewing, R. C., Growth and surface characterization of sputter-deposited molybdenum oxide thin films Appl. Surf. Sci. 253, 5368–74 (2007)
[32] Vink, T. J., Verbeek, R. G. F. A., Snijders, J. H. M., and Tamminga, Y., Physically trapped oxygen in sputter-deposited MoO3 films 7252, 3–6 (2011)
[33] Ramana, C. V., Atuchin, V. V., Pokrovsky, L. D., Becker, U., and Julien, C. M., Structure and chemical properties of molybdenum oxide thin films J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 25, 1166–71 (2007)
[34] Uthanna, S., Nirupama, V., and Pierson, J. F., Substrate temperature influenced structural, electrical and optical properties of dc magnetron sputtered MoO3 films Appl. Surf. Sci. 256, 3133–7 (2010)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.81.94
論文開放下載的時間是 校外不公開

Your IP address is 3.16.81.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code