Responsive image
博碩士論文 etd-0811117-111125 詳細資訊
Title page for etd-0811117-111125
論文名稱
Title
覆晶封裝製程時內嵌銅軌基板翹曲行為之有限元素分析
Finite Element Analyzes of Warpage Behavior of Embedded Copper Trace Substrate During Flip Chip Package Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
103
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-31
繳交日期
Date of Submission
2017-09-11
關鍵字
Keywords
翹曲變形、內嵌式銅軌基板、覆晶封裝、有限元素分析
Embedded copper trace substrate, Flip-chip package, Finite element analysis, Warpage deformation
統計
Statistics
本論文已被瀏覽 5712 次,被下載 523
The thesis/dissertation has been browsed 5712 times, has been downloaded 523 times.
中文摘要
隨著半導體產業不斷的進步,以及人們對於3C電子產品越輕越薄的需求下,電子封裝技術的要求也逐漸與日俱增。覆晶封裝製程是近年來較為新穎的封裝技術,特別是內嵌式銅軌基板的熱覆晶封裝製程,不同於以往基板的設計,將銅軌線路內嵌於基板中,藉此以達到降低封裝晶片厚度及提升晶片效能的目的。但由於目前封裝產業對此熱覆晶封裝製程中的相關參數和內嵌式銅軌基板的變形機制尚未完全了解,故本研究將針對此內嵌式銅軌基板的翹曲做相關的探討。
本研究利用有限元素模擬軟體ANSYS進行內嵌式基板的模型建立與熱變形相關的探討分析,但因內嵌式銅軌基板的內部結構具有高度非對稱性與複雜的銅軌分布,在有限元素模擬軟體的模型建立上不僅十分困難,所需的求解資源也十分龐大,本研究以面積占有比例來等效與簡化複雜的基板結構,分析簡化模型的翹曲變形情形,找出基板變形的機制。使用有限元素模擬及結合田口方法,分析各個尺寸變數對於基板翹曲的影響,進而最佳化基板尺寸的製程參數。有限元素模擬的解析結果也與實驗結果比對以驗證模擬結果分析的可行性,最後提供最佳化製程參數供給基板設計端作為參考準則。
Abstract
With the advance of the semiconductor industry and in response to the demands of ultra-thin electronic products, packaging technology has been continuously developed. Thermal bonding process of copper pillar flip chip package is a new bonding process in packaging technology, especially for the substrate with embedded copper traces, different from the substrate design before, replaced the protruding copper traces into the embedded copper traces to reduce the thickness of the substrate. However, due to the current packaging industry, the deformation mechanism and the relevant parameters of the packaging process of embedded copper trace substrate are not clear, this study will discuss the thermal deformation of the embedded copper trace substrate.
Finite element simulation software “ANSYS” used in this study to analysis the thermal deformation of embedded copper trace substrate and establish the substrate model, however, the internal structure of the embedded copper trace substrate has a high degree of asymmetry and complex copper trace distribution, it’s not only difficult to establish model in finite element simulation software but also required huge resources to solve. Area occupation ratio was applied in this study to simplify the complex copper trace structure, analyze the simplify structure and try to find out the deformation mechanism of the substrate. Taguchi method also applied into established finite element simulation model, discussing the effect of the various structure variables of the substrates, thereby optimizing the package process parameters of the substrate. Finite element analysis results also compare to the experiment measurement results to verify the reliability of simulation results, finally supplied the optimization process parameters to the substrate designer as a reference criterion.
目次 Table of Contents
論文審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1 前言 1
1.2 電子封裝技術簡介 3
1.2.1 電子封裝發展歷程 3
1.2.2 電子封裝層級 5
1.2.3 積體電路晶片與電路基板連接方式 6
1.3 覆晶封裝製程與內嵌式銅軌基板之簡介 7
1.3.1 銅柱覆晶發展簡介 7
1.3.2 銅柱覆晶封裝回焊製程簡介 8
1.3.3 銅柱覆晶封裝之應用 9
1.4 文獻回顧 10
1.5 研究動機與目的 14
1.6 論文架構及研究流程 15
第二章 內嵌式銅軌基板翹曲行為之有限元素分析 17
2.1 前言 17
2.2 內嵌式銅軌基板之三維熱變形分析 18
2.2.1 有限元素軟體ANSYS簡介 18
2.2.2 三維有限元素模擬基本假設與幾何尺寸簡介 19
2.2.3 內嵌式銅軌基板之三維等效幾何模型 22
2.2.4 內嵌式銅軌基板之材料特性 26
2.2.5 有限元素分析邊界條件設定與網格劃分 27
2.2.6 三維熱變形解析結果 31
2.3 基板三維熱變形有限元素分析之探討 46
2.3.1 有限元素網格收斂性分析 46
2.3.2 基板三維熱變形有限元素分析結果線性回歸 48
第三章 製程參數之最佳化分析 55
3.1 田口實驗法簡介 55
3.1.1 田口實驗法背景 55
3.1.2 多水準因子實驗方法簡介 55
3.1.3 品質損失函數 59
3.2 田口實驗法結合三維有限元素分析 62
3.2.1 前言 62
3.2.2 與銅材料相關變數之田口法分析 63
3.2.3 與阻焊劑材料相關變數之田口法分析 68
第四章 內嵌式銅軌基板翹曲解析結果與實驗結果之比較 72
4.1 光學量測技術簡介 72
4.2 量測結果與解析結果之比較 78
第五章 結論 84
5.1 內嵌式銅軌基板翹曲行為之三維有限元素解析結果 84
5.2 田口方法結合三維有限元素分析結果 85
5.3 實驗與解析結果比較 86
5.4 今後課題與未來方向 86
參考文獻 87
參考文獻 References
[1] 田民波,半導體電子元件構裝技術: 五南圖書出版股份有限公司,2005.
[2] V. Luo, X. T. Xue, K. C. Yu, J. Meng, H. L. Lu, D. W. Zhang, “Method to Improve the Process Efficiency for Copper Pillar Electroplating”, Journal of The Electrochemical Society, Vol. 163, Issue 3, E39-E42, 2016.
[3] Z. Zhang, C. P. Wong, “Flip-Chip Underfill: Materials, Process and Reliability”, Materials for Advanced Packaging, pp.307-337, 2009
[4] J. H. Zhao, X. Dai, and P. S. Ho, “Stress-induced atom diffusion at thermosonic flip chip bonding interface”, Sensors and Actuators A: Physical, Vol. 149, pp.100-105, Jan. 2009.
[5] D. H. Kim, S. J. Joo, D. O. Kwak, “Warpage Simulation of a Multilayer Printed Circuit Board and Microelectronic Package Using the Anisotropic Viscoelastic Shell Modeling Technique That Considers the Initial Warpage”, IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, Issue 11, pp.1667-1676, Nov. 2016.
[6] M. Y. Tsai, H. Y. Chang, M. Pecht, “Warpage Analysis of Flip-Chip PBGA Packages Subject to Thermal Loading”, IEEE Transactions on Device and Materials Reliability, Vol. 9, Issue 3, pp.419-424, Sept. 2009.
[7] L. O. McCaslin, S. Yoon, H. Kim, “Methodology for Modeling Substrate Wapage Using Copper Trace Pattern Implementation”, IEEE Transactions on Advanced Packaging, Vol. 32, Issue 4, pp.740-745, Nov. 2009.
[8] Y. Cheng, G. Xu, D. Zhu, X. Lin, and L. Luo, “Thermo-mechanical Reliability Study of High I/Os Flip Chip on Laminated Substrate Based on FEA, RSM and Interfacial Fracture Mechanics”, Electronic Packaging Technology, 2005 6th International Conference, pp. 1-7, 2005.
[9] J. R. Jhou, M. Y. Tsai, C. Y. Wu, “Thermal stresses and deformations of Cu pillar flip chip BGA package: Analyses and measurements”, Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT), 2010 5th International, Oct. 2010.
[10] Y. Sun, X. He, Z. Yu, “Development of ultra-thin low warpage coreless substrate”, Electronic Components and Technology Conference (ECTC), 2013 IEEE 63rd, pp.1846-1849, May. 2013.
[11] K. Toriyama, Y. Takeoka, K. Okamoto, H. Noma, Y. Orii, “Joint reliability study of solder capped metal pillar bump interconnections on an organic substrate”, CPMT Symposium Japan, 2012 2nd IEEE, pp.1-4, 2012
[12] C. Zhu, H. Li, G. Xu, L. Luo, “A novel mechanical diced trench structure for warpage reduction in wafer level packaging process”, Microelectronics Reliability, Vol. 55, Issue 2, pp.418-423, Feb. 2015.
[13] Y. Niu, H. Wang, S. B. Park, “A general strategy of in-situ warpage characterization for solder attached packages with digital image correlation method”, Optics and Lasers in Engineering, Vol. 93, pp.9-18, Jun. 2017.
[14] 藍天雄,邱銘杰,葉隆吉,“應用有限元素法和田口法於射出成型製品補強肋之罪適設計研究” ,中國機械工程學會第二十三屆全國學術研討會論文集,論文編號C9-022,中華民國九十五年十一月二十四日、二十五日。
[15] H. Mehboob, S. H. Chang, “Optimal design of a functionally graded biodegradable composite bone plate by using the Taguchi method and finite element analysis”, Composite Structures, Vol. 119, pp.166-173, Jan. 2015.
[16] H. Huh, J. H. Heo, HJ. W Lee, “Optimization of a roller levelling process for Al7001T9 pipes with finite element analysis and Taguchi method”, International Journal of Machine Tools and Manufacture, Vol. 43, Issue 4, pp.345-350, Mar. 2003.
[17] S. H. Chao, C. P. Hung, M. Chen, Y. Lee, J. Huang, G. Kao, D.B. Luh, “An embedded trace FCCSP substrate without glass cloth”, Microelectronics Reliability, Vol. 57, pp.101-110, Feb. 2016.
[18] 邱聖育,”銅柱覆晶封裝製程之有限元素分析”,國立中山大學碩士論文,2015。
[19] 洪振修,”封裝無芯基板於溫度負載下之可靠度研究”,國立中山大學碩士論文,2015。
[20] 郭昱綸,”覆晶球柵陣列電子封裝體在溫度循環下的熱應力與熱應變分析”,國立中山大學碩士論文,2002。
[21] Y. Wang, K. H. Lu, J. Im, P. S. Ho, “Reliability of Cu pillar bumps for flip-chip packages with ultra low-k dielectrics”, Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, pp.1404-1410, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code