Responsive image
博碩士論文 etd-0811117-130055 詳細資訊
Title page for etd-0811117-130055
論文名稱
Title
利用氣膠真空紫外光光電子光譜探測有機化合物水溶液奈米氣膠之價殼層電子結構、介面特性及表面pH值
Probing the Valence Electronic Structures, Interfacial Properties and Surface pH of Biological and Organic Aqueous Nanoaerosols via Aerosol VUV Photoelectron Spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-09-07
繳交日期
Date of Submission
2017-09-11
關鍵字
Keywords
精胺酸、游離能、氣膠真空紫外光光電子光譜、蒸發冷卻、表面pH、鄰苯二酚、苯酚、離胺酸、重水、組胺酸、2.5微米懸浮微粒、氣膠
catechol, phenol, histidine, lysine, arginine, heavy water, aerosol VUV photoelectron spectroscopy, vertical ionization energy, evaporative cooling, aerosol, PM2.5, surface pH
統計
Statistics
本論文已被瀏覽 5704 次,被下載 27
The thesis/dissertation has been browsed 5704 times, has been downloaded 27 times.
中文摘要
氣膠(aerosol)是空氣中懸浮微粒的泛稱。這些懸浮微粒以極細微之固態顆粒或是液滴形式存在,它們的尺寸範圍通常介於數個奈米乃至微米等級,性質會受其化學組成、外在形狀乃至內部結構影響。氣膠科學在環境化學、大氣化學以及生物化學等領域都扮演重要的角色。為深入了解奈米級氣膠粒子物理及化學特性在生物化學及環境大氣化學上扮演的重要性,本論文利用氣膠真空紫外光光電子光譜儀,並以同步輻射產生之真空紫外光 (Vacuum Ultraviolet Radiation, VUV) 作為游離光源,探討了三大類具環境及生化重要意義的氣膠價電子能級結構,包括: (一) 純水,(二) 鹼性胺基酸 及 (三)具兩性(amphiphilic)特性的苯酚類有機水溶液氣膠。本論文首先量測並輔以計算探討了本實驗中純水氣膠進入真空腔體後的物化特性,包括其進入到真空腔體後因蒸發冷卻(evaporative cooling) 效應所導致的尺寸大小和溫度改變以及其對應的狀態。透過比較純水(H2O)及重水(D2O)氣膠光電子光譜的差異,本論文探討了純水氣膠的可能微觀結構。在鹼性胺基酸部分,本論文探討了離胺酸(Lysine)、精胺酸(Arginine)及組胺酸(Histidine)三種鹼性胺基酸在水溶液氣膠狀態下的光電子光譜,以了解其價殼層電子能級結構。 鹼性胺基酸往往在生理環境中參與氫鍵的形成並扮演氫鍵施予體 (hydrogen bond donor) 的角色。本論文中深入探討這三種鹼性胺基酸在不同酸鹼值的水溶液環境中,其質子化及去質子化程度對其游離能的變化及側鏈可能造成的影響。除了氣膠中溶質本身的物化特性,其界面水合特性及表面pH值亦是需要深入探討的重點。第三部分,本論文利用苯酚(Phenol)水溶液氣膠光電子光譜的變化探討奈米級水溶液的表面及水溶液中pH值的差異,並探討可能導致表面pH較水溶液中pH值低的原因以及其在大氣環境中可能導致的影響。
Abstract
Aerosol are broadly defined as particulate matters suspended in the air. They may exist either as solids or liquid droplets, with sizes ranging from a few nanometers up to hundreds of micrometers. The physical, chemical, optical and biological properties of aerosols may be inherently governed by their chemical compositions, external morphology and internal structures. Aerosols play important roles in the field of environmental chemistry, atmospheric chemistry and biological chemistry. The primary goal of this thesis is to investigate the intrinsic valence electronic properties of nanoscaled aerosols. Three major types of aerosols have been chosen for study in this thesis, including: I) pure water nanoaerosols, II) three basic amino acids and III) amphiphilic phenolic-containing aqueous aerosols. The aerosol VUV photoelectron spectroscopy has been applied as the major experimental investigation tool, and the synchrotron radiation generated VUV has been used as the photoionization source. To gain a better understanding on the nature of water nanoaerosols, I have first applied the kinetic theory of evaporation to estimate the size and temperature of pure water nanoaerosols at the photoionization region by taking the evaporative cooling effect into consideration. The VUV photoelectron spectra of pure H2O and D2O aerosols have been measured and compared, from which the nature and possible microscopic structures of water aerosols are interrogated. In the second part of this thesis, I studied the solvated electronic structures of three basic amino acids, including Lysine, Arginine and Histidine in the form of aqueous aerosols. These three basic amino acids are often involved in the hydrogen bond formation by acting as the hydrogen bond donor. By measuring the pH-dependent valence photoelectron spectra of these three basic amino acids, their vertical ionization energies in association with protonation/deprotonation status and the possible role of the side chain in affecting the valence electronic properties are interrogated.
  The interfacial properties and surface pH of aqueous aerosols play determinant roles in affecting their chemical activities. In the third part of this thesis, I investigated the surface pH of nanoscaled aqueous aerosols. Due to the amphiphilic nature of phenol, it is only partially solvated and thus favorably provide a surface-sensitive probe to assess the surface pH of aqueous interface. In this thesis, I investigate the surface pH of phenol aqueous aerosols at several chosen pH conditions, with a goal to examine whether the surface-to-bulk pH difference varies with pH conditions. From the investigations on the three specific types of aqueous nanoaerosols, new insights regarding the valence electronic properties, interfacial solvation structures and corresponding energetic properties can be gained.
目次 Table of Contents
Chapter 1 Introduction 1
1.1. Overview of aerosol science 1
1.1.1. Fundamental characteristics of aerosols 1
1.1.2. Temperature and size effect of aerosols 2
1.1.3. Aerosols in the atmospheric and environment chemistry 3
1.1.4. Aerosols in the biomedical and biophysical chemistry 5
1.2. Research motivation and scope of this thesis 6
Chapter 2 Experiment 7
2.1. Aerosol generation 8
2.2. Pre-characterization of size distribution of aqueous aerosols 10
2.3. Aerosol beam formation via aerodynamic focusing 14
2.3.1. The components of AADL system 16
2.3.2. Functions of AADL system 17
2.3.3. Simulation and Optimization the AADL design 17
2.3.4. Final design of the AADL system 19
2.4 Principle of ultraviolet photoelectron spectroscopy (UPS) 20
2.4.1. The photoelectric effect 21
2.4.2. Adiabatic and vertical ionization energy 23
2.5. Aerosol VUV photoelectron spectroscopy 24
2.6. Ionization light sources of synchrotron radiation 25
2.6.1. Introduction of Synchrotron radiation 26
2.7. Detector of VUV photoelectron spectroscopy 29
Chapter 3 Characterization of size, temperature and nature of aqueous aerosols 32
3.1. Introduction 32
3.2. Pre-characterization of size distribution of aqueous aerosols 32
3.3. Evaporation effect on the size of pure water nanodroplets 34
3.4. Evaporative cooling effect on the temperature of pure water nanodroplets 37
3.5. Curvature effect on nanoscaled aqueous aerosols 39
3.6. Effect of evaporation on the pH value 43
3.7. VUV photoelectron spectra of pure H2O and D2O nanodroplets 44
3.8. Summary 56
Chapter 4 Valence electronic structures of solvated basic amino acids studied via aerosols VUV photoelectron spectroscopy 58
4.1. Introduction 58
4.2. VUV photoelectron spectra of lysine aqueous aerosols at varying pH conditions 61
4.2.1. Introduction of Lysine 61
4.2.2. Photoelectron spectra of lysine at varying pH conditions 63
4.3. VUV photoelectron spectra of arginine aqueous aerosols at varying pH conditions 68
4.3.1. Introduction of Arginine 68
4.3.2. Photoelectron spectra of Arginine at varying pH conditions 71
4.4. VUV photoelectron spectra of histidine aqueous aerosols at varying pH conditions 77
4.4.2. Photoelectron spectra of histidine at varying pH conditions 79
4.5. Comparison of three basic amino acid: Lysine, Arginine and Histidine 86
Chapter 5 The phenolic compound and surface pH 93
5.1. Introduction 93
5.1.1. Significance of interfacial properties of aqueous aerosols 93
5.1.2. Surface pH of aqueous interfaces 94
5.2. Results 95
5.2.1. An estimate on the photon penetration depth 95
5.2.2. Phenols as a molecular probe for the interfacial properties of aqueous aerosols 97
5.3. The effect of solute species on the surface pH 108
Chapter 6 Conclusion 115
參考文獻 References
1. Wilson, T. W.; Ladino, L. A.; Alpert, P. A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, S. M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, G.; Miller, L. A.; Najera, J. J.; Polishchuk, E.; Rae, S.; Schiller, C. L.; Si, M.; Temprado, J. V.; Whale, T. F.; Wong, J. P. S.; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, J. P. D.; Aller, J. Y.; Bertram, A. K.; Knopf, D. A.; Murray, B. J., A marine biogenic source of atmospheric ice-nucleating particles. Nature 2015, 525 (7568), 234-238.
2. Estillore, A. D.; Trueblood, J. V.; Grassian, V. H., Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chemical Science 2016, 7 (11), 6604-6616.
3. Boyd, C. M.; Nah, T.; Xu, L.; Berkemeier, T.; Ng, N. L., Secondary Organic Aerosol (SOA) from Nitrate Radical Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing, and Evaporation. Environmental Science & Technology 2017, 51 (14), 7831-7841.
4. Solomon, S., Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press: 2007.
5. Watson, J. G., Visibility: Science and Regulation. J. Air. Waste. Manage. Assoc. 2002, 52 (6), 628-713.
6. Sørensen, M.; Schins, R. P. F.; Hertel, O.; Loft, S., Transition Metals in Personal Samples of PM2.5 and Oxidative Stress in Human Volunteers. Cancer Epidemiology Biomarkers & Prevention 2005, 14 (5), 1340-1343.
7. Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J., Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. Journal of Thoracic Disease 2016, 8 (1), E8-E19.
8. Dhand, R.; Dolovich, M.; Chipps, B.; R. Myers, T.; Restrepo, R.; Rosen Farrar, J., The Role of Nebulized Therapy in the Management of COPD: Evidence and Recommendations. COPD: Journal of Chronic Obstructive Pulmonary Disease 2012, 9 (1), 58-72.
9. Dhand, R., Aerosol Therapy in Patients Receiving Noninvasive Positive Pressure Ventilation. Journal of Aerosol Medicine and Pulmonary Drug Delivery 2011, 25 (2), 63-78.
10. Murphy, W. K.; Sears, G. W., Production of Particulate Beams. Journal of Applied Physics 1964, 35 (6), 1986-1987.
11. Allen, J.; Gould, R. K., Mass spectrometric analyzer for individual aerosol particles. Review of Scientific Instruments 1981, 52 (6), 804-809.
12. Hall, T. D.; Beeman, W. W., Secondary electron emission from beams of polystyrene latex spheres. Journal of Applied Physics 1976, 47 (12), 5222-5225.
13. Seapan, M.; Selman, D.; Seale, F.; Siebers, G.; Wissler, E. H., Aerosol characterization using molecular beam techniques. Journal of Colloid and Interface Science 1982, 87 (1), 154-166.
14. Sinha, M. P.; Friedlander, S. K., Mass distribution of chemical species in a polydisperse aerosol: Measurement of sodium chloride in particles by mass spectrometry. Journal of Colloid and Interface Science 1986, 112 (2), 573-582.
15. Kantrowitz, A.; Grey, J., A High Intensity Source for the Molecular Beam. Part I. Theoretical. Review of Scientific Instruments 1951, 22 (5), 328-332.
16. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Science and Technology 1995, 22 (3), 314-324.
17. Jayne, J. T.; Leard, D. C.; Zhang, X.; Davidovits, P.; Smith, K. A.; Kolb, C. E.; Worsnop, D. R., Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Science and Technology 2000, 33 (1-2), 49-70.
18. Northway, M. J.; Jayne, J. T.; Toohey, D. W.; Canagaratna, M. R.; Trimborn, A.; Akiyama, K. I.; Shimono, A.; Jimenez, J. L.; DeCarlo, P. F.; Wilson, K. R.; Worsnop, D. R., Demonstration of a VUV Lamp Photoionization Source for Improved Organic Speciation in an Aerosol Mass Spectrometer. Aerosol Science and Technology 2007, 41 (9), 828-839.
19. Canagaratna, M. R.; Jayne, J. T.; Jimenez, J. L.; Allan, J. D.; Alfarra, M. R.; Zhang, Q.; Onasch, T. B.; Drewnick, F.; Coe, H.; Middlebrook, A.; Delia, A.; Williams, L. R.; Trimborn, A. M.; Northway, M. J.; DeCarlo, P. F.; Kolb, C. E.; Davidovits, P.; Worsnop, D. R., Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews 2007, 26 (2), 185-222.
20. Loh, N. D.; Hampton, C. Y.; Martin, A. V.; Starodub, D.; Sierra, R. G.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J.; Shoeman, R. L.; Kassemeyer, S.; Bostedt, C.; Bozek, J.; Epp, S. W.; Erk, B.; Hartmann, R.; Rolles, D.; Rudenko, A.; Rudek, B.; Foucar, L.; Kimmel, N.; Weidenspointner, G.; Hauser, G.; Holl, P.; Pedersoli, E.; Liang, M.; Hunter, M. M.; Gumprecht, L.; Coppola, N.; Wunderer, C.; Graafsma, H.; Maia, F. R. N. C.; Ekeberg, T.; Hantke, M.; Fleckenstein, H.; Hirsemann, H.; Nass, K.; White, T. A.; Tobias, H. J.; Farquar, G. R.; Benner, W. H.; Hau-Riege, S. P.; Reich, C.; Hartmann, A.; Soltau, H.; Marchesini, S.; Bajt, S.; Barthelmess, M.; Bucksbaum, P.; Hodgson, K. O.; Struder, L.; Ullrich, J.; Frank, M.; Schlichting, I.; Chapman, H. N.; Bogan, M. J., Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature 2012, 486 (7404), 513-517.
21. Liu, P.; Ziemann, P. J.; Kittelson, D. B.; McMurry, P. H., Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions. Aerosol Science and Technology 1995, 22 (3), 293-313.
22. Wang, X.; McMurry, P. H., Instruction Manual for the Aerodynamic Lens Calculator. Aerosol Science and Technology 2006, 40 (5), 1-10.
23. Wang, X.; McMurry, P. H., A Design Tool for Aerodynamic Lens Systems. Aerosol Science and Technology 2006, 40 (5), 320-334.
24. Zhang, X.; Smith, K. A.; Worsnop, D. R.; Jimenez, J.; Jayne, J. T.; Kolb, C. E., A Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle System: Part I. An Individual Lens or Nozzle. Aerosol Science and Technology 2002, 36 (5), 617-631.
25. Siegbahn, H.; Siegbahn, K., ESCA applied to liquids. Journal of Electron Spectroscopy and Related Phenomena 1973, 2 (3), 319-325.
26. Ottosson, N.; Børve, K. J.; Spångberg, D.; Bergersen, H.; Sæthre, L. J.; Faubel, M.; Pokapanich, W.; Öhrwall, G.; Björneholm, O.; Winter, B., On the Origins of Core−Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq. Journal of the American Chemical Society 2011, 133 (9), 3120-3130.
27. Faubel, M.; Schlemmer, S.; Toennies, J. P., A molecular beam study of the evaporation of water from a liquid jet. Zeitschrift für Physik D Atoms, Molecules and Clusters 1988, 10 (2), 269-277.
28. Smith, J. D.; Cappa, C. D.; Drisdell, W. S.; Cohen, R. C.; Saykally, R. J., Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets. Journal of the American Chemical Society 2006, 128 (39), 12892-12898.
29. Hertz, H., Ueber die Verdunstung der Flüssigkeiten, insbesondere des Quecksilbers, im luftleeren Raume. Annalen der Physik 1882, 253 (10), 177-193.
30. Buck, A. L., NEW EQUATIONS FOR COMPUTING VAPOR-PRESSURE AND ENHANCEMENT FACTOR. Journal of Applied Meteorology 1981, 20 (12), 1527-1532.
31. Buck Research Instruments, L., Buck Research CR-1A User's Manual. 1996.
32. Tolman, R. C., The Effect of Droplet Size on Surface Tension. The Journal of Chemical Physics 1949, 17 (3), 333-337.
33. Huang, J.; Bartell, L. S., Kinetics of Homogeneous Nucleation in the Freezing of Large Water Clusters. The Journal of Physical Chemistry 1995, 99 (12), 3924-3931.
34. Johari, G. P.; Hallbrucker, A.; Mayer, E., The glass-liquid transition of hyperquenched water. Nature 1987, 330 (6148), 552-553.
35. Kohl, I.; Bachmann, L.; Mayer, E.; Hallbrucker, A.; Loerting, T., Water BehaviourGlass transition in hyperquenched water? Nature 2005, 435 (7041), E1-E1.
36. Brundle, C. R.; Turner, D. W., HIGH RESOLUTION MOLECULAR PHOTOELECTRON SPECTROSCOPY .2. WATER AND DEUTERIUM OXIDE. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1968, 307 (1488), 27-&.
37. Reutt, J. E.; Wang, L. S.; Lee, Y. T.; Shirley, D. A., MOLECULAR-BEAM PHOTOELECTRON-SPECTROSCOPY AND FEMTOSECOND INTRAMOLECULAR DYNAMICS OF H2O+ AND D2O+. J. Chem. Phys. 1986, 85 (12), 6928-6939.
38. Faubel, M.; Steiner, B.; Toennies, J. P., Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106 (22), 9013-9031.
39. Winter, B.; Weber, R.; Widdra, W.; Dittmar, M.; Faubel, M.; Hertel, I. V., Full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 2004, 108 (14), 2625-2632.
40. Nishizawa, K.; Kurahashi, N.; Sekiguchi, K.; Mizuno, T.; Ogi, Y.; Horio, T.; Oura, M.; Kosugi, N.; Suzuki, T., High-resolution soft X-ray photoelectron spectroscopy of liquid water. Physical Chemistry Chemical Physics 2011, 13 (2), 413-417.
41. Kurahashi, N.; Karashima, S.; Tang, Y.; Horio, T.; Abulimiti, B.; Suzuki, Y.-I.; Ogi, Y.; Oura, M.; Suzuki, T., Photoelectron spectroscopy of aqueous solutions: Streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X. J. Chem. Phys. 2014, 140 (17).
42. Searcy, J. Q.; Fenn, J. B., Clustering of water on hydrated protons in a supersonic free jet expansion. The Journal of Chemical Physics 1974, 61 (12), 5282-5288.
43. Shin, J.-W.; Hammer, N. I.; Diken, E. G.; Johnson, M. A.; Walters, R. S.; Jaeger, T. D.; Duncan, M. A.; Christie, R. A.; Jordan, K. D., Infrared Signature of Structures Associated with the H<sup>+</sup>(H<sub>2</sub>O)<em><sub>n</sub></em> (<em>n</em> = 6 to 27) Clusters. Science 2004, 304 (5674), 1137-1140.
44. Miyazaki, M.; Fujii, A.; Ebata, T.; Mikami, N., Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages. Science 2004, 304 (5674), 1134-1137.
45. Belau, L.; Wilson, K. R.; Leone, S. R.; Ahmed, M., Vacuum Ultraviolet (VUV) Photoionization of Small Water Clusters. The Journal of Physical Chemistry A 2007, 111 (40), 10075-10083.
46. Karlsson, L.; Mattsson, L.; Jadrny, R.; Albridge, R. G.; Pinchas, S.; Bergmark, T.; Siegbahn, K., Isotopic and vibronic coupling effects in the valence electron spectra of H2 16O, H2 18O, and D2 16O. The Journal of Chemical Physics 1975, 62 (12), 4745-4752.
47. Mishima, O.; Stanley, H. E., The relationship between liquid, supercooled and glassy water. Nature 1998, 396 (6709), 329-335.
48. Sellberg, J. A.; Huang, C.; McQueen, T. A.; Loh, N. D.; Laksmono, H.; Schlesinger, D.; Sierra, R. G.; Nordlund, D.; Hampton, C. Y.; Starodub, D.; DePonte, D. P.; Beye, M.; Chen, C.; Martin, A. V.; Barty, A.; Wikfeldt, K. T.; Weiss, T. M.; Caronna, C.; Feldkamp, J.; Skinner, L. B.; Seibert, M. M.; Messerschmidt, M.; Williams, G. J.; Boutet, S.; Pettersson, L. G. M.; Bogan, M. J.; Nilsson, A., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature 2014, 510 (7505), 381-384.
49. Sellberg, J. A.; McQueen, T. A.; Laksmono, H.; Schreck, S.; Beye, M.; DePonte, D. P.; Kennedy, B.; Nordlund, D.; Sierra, R. G.; Schlesinger, D.; Tokushima, T.; Zhovtobriukh, I.; Eckert, S.; Segtnan, V. H.; Ogasawara, H.; Kubicek, K.; Techert, S.; Bergmann, U.; Dakovski, G. L.; Schlotter, W. F.; Harada, Y.; Bogan, M. J.; Wernet, P.; Föhlisch, A.; Pettersson, L. G. M.; Nilsson, A., X-ray emission spectroscopy of bulk liquid water in “no-man’s land”. The Journal of Chemical Physics 2015, 142 (4), 044505.
50. Li, T.; Donadio, D.; Galli, G., Ice nucleation at the nanoscale probes no man’s land of water. Nat Commun 2013, 4, 1887.
51. Murata, K.-i.; Tanaka, H., Liquid–liquid transition without macroscopic phase separation in a water–glycerol mixture. Nat Mater 2012, 11 (5), 436-443.
52. Moore, E. B.; Molinero, V., Ice crystallization in water’s “no-man’s land”. The Journal of Chemical Physics 2010, 132 (24), 244504.
53. Šesták, J.; Hubík, P.; Mareš, J. J., Thermal Analysis Scheme Anticipated for Better Understanding of the Earth Climate Changes: Impact of Irradiation, Absorbability, Atmosphere, and Nanoparticles. In Thermal Physics and Thermal Analysis: From Macro to Micro, Highlighting Thermodynamics, Kinetics and Nanomaterials, Šesták, J.; Hubík, P.; Mareš, J. J., Eds. Springer International Publishing: Cham, 2017; pp 471-494.
54. Su, C.-C.; Yu, Y.; Chang, P.-C.; Chen, Y.-W.; Chen, I. Y.; Lee, Y.-Y.; Wang, C. C., VUV Photoelectron Spectroscopy of Cysteine Aqueous Aerosols: A Microscopic View of Its Nucleophilicity at Varying pH Conditions. The Journal of Physical Chemistry Letters 2015, 6 (5), 817-823.
55. Nolting, D.; Aziz, E. F.; Ottosson, N.; Faubel, M.; Hertel, I. V.; Winter, B., pH-Induced Protonation of Lysine in Aqueous Solution Causes Chemical Shifts in X-ray Photoelectron Spectroscopy. Journal of the American Chemical Society 2007, 129 (45), 14068-14073.
56. Dehareng, D.; Dive, G., Vertical Ionization Energies of α-L-Amino Acids as a Function of Their Conformation: an Ab Initio Study. International Journal of Molecular Sciences 2004, 5 (11), 301.
57. Ling, S.; Yu, W.; Huang, Z.; Lin, Z.; Harañczyk, M.; Gutowski, M., Gaseous Arginine Conformers and Their Unique Intramolecular Interactions. The Journal of Physical Chemistry A 2006, 110 (44), 12282-12291.
58. Li, H.; Hua, W.; Lin, Z.; Luo, Y., First-Principles Study on Core-Level Spectroscopy of Arginine in Gas and Solid Phases. The Journal of Physical Chemistry B 2012, 116 (42), 12641-12650.
59. Bush, M. F.; Prell, J. S.; Saykally, R. J.; Williams, E. R., One Water Molecule Stabilizes the Cationized Arginine Zwitterion. Journal of the American Chemical Society 2007, 129 (44), 13544-13553.
60. Xu, B.; Jacobs, M. I.; Kostko, O.; Ahmed, M., Guanidinium Group Remains Protonated in a Strongly Basic Arginine Solution. ChemPhysChem 2017, 18 (12), 1503-1506.
61. Blomberg, F.; Maurer, W.; Rueterjans, H., Nuclear magnetic resonance investigation of nitrogen-15-labeled histidine in aqueous solution. Journal of the American Chemical Society 1977, 99 (25), 8149-8159.
62. Nolting, D.; Ottosson, N.; Faubel, M.; Hertel, I. V.; Winter, B., Pseudoequivalent Nitrogen Atoms in Aqueous Imidazole Distinguished by Chemical Shifts in Photoelectron Spectroscopy. Journal of the American Chemical Society 2008, 130 (26), 8150-8151.
63. Jagoda-Cwiklik, B.; Slavíček, P.; Nolting, D.; Winter, B.; Jungwirth, P., Ionization of Aqueous Cations: Photoelectron Spectroscopy and ab Initio Calculations of Protonated Imidazole. The Journal of Physical Chemistry B 2008, 112 (25), 7355-7358.
64. Jagoda-Cwiklik, B.; Slavíček, P.; Cwiklik, L.; Nolting, D.; Winter, B.; Jungwirth, P., Ionization of Imidazole in the Gas Phase, Microhydrated Environments, and in Aqueous Solution. The Journal of Physical Chemistry A 2008, 112 (16), 3499-3505.
65. Huang, Z.; Lin, Z.; Song, C., Protonation Processes and Electronic Spectra of Histidine and Related Ions. The Journal of Physical Chemistry A 2007, 111 (20), 4340-4352.
66. Knipping, E. M.; Lakin, M. J.; Foster, K. L.; Jungwirth, P.; Tobias, D. J.; Gerber, R. B.; Dabdub, D.; Finlayson-Pitts, B. J., Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols. Science 2000, 288 (5464), 301-306.
67. Pratt, L. R.; Pohorille, A., Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chem. Rev. 2002, 102 (8), 2671-2691.
68. Björneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L.-M.; Limmer, D. T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; Tyrode, E.; Walz, M.-M.; Werner, J.; Bluhm, H., Water at Interfaces. Chem. Rev. 2016, 116 (13), 7698-7726.
69. Buch, V.; Milet, A.; Vácha, R.; Jungwirth, P.; Devlin, J. P., Water surface is acidic. Proceedings of the National Academy of Sciences 2007, 104 (18), 7342-7347.
70. Yamaguchi, S.; Kundu, A.; Sen, P.; Tahara, T., Communication: Quantitative estimate of the water surface pH using heterodyne-detected electronic sum frequency generation. The Journal of Chemical Physics 2012, 137 (15), 151101.
71. Mishra, H.; Enami, S.; Nielsen, R. J.; Stewart, L. A.; Hoffmann, M. R.; Goddard, W. A.; Colussi, A. J., Brønsted basicity of the air–water interface. Proceedings of the National Academy of Sciences 2012, 109 (46), 18679-18683.
72. Wen, Y.-C.; Zha, S.; Tian, C.; Shen, Y. R., Surface pH and Ion Affinity at the Alcohol-Monolayer/Water Interface Studied by Sum-Frequency Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (28), 15224-15229.
73. Tarbuck, T. L.; Ota, S. T.; Richmond, G. L., Spectroscopic studies of solvated hydrogen and hydroxide ions at aqueous surfaces. J. Am. Chem. Soc. 2006, 128 (45), 14519-14527.
74. Petersen, P. B.; Saykally, R. J., Is the liquid water surface basic or acidic? Macroscopic vs. molecular-scale investigations. Chem. Phys. Lett. 2008, 458 (4–6), 255-261.
75. Winter, B.; Faubel, M.; Vácha, R.; Jungwirth, P., Behavior of hydroxide at the water/vapor interface. Chem. Phys. Lett. 2009, 474 (4–6), 241-247.
76. Mundy, C. J.; Kuo, I. F. W.; Tuckerman, M. E.; Lee, H.-S.; Tobias, D. J., Hydroxide anion at the air–water interface. Chem. Phys. Lett. 2009, 481 (1–3), 2-8.
77. Winter, B.; Faubel, M.; Vácha, R.; Jungwirth, P., Reply to comments on Frontiers Article ‘Behavior of hydroxide at the water/vapor interface’. Chem. Phys. Lett. 2009, 481 (1–3), 19-21.
78. Petersen, P. B.; Saykally, R. J., ON THE NATURE OF IONS AT THE LIQUID WATER SURFACE. Annu. Rev. Phys. Chem. 2006, 57 (1), 333-364.
79. Debies, T. P.; Rabalais, J. W., Photoelectron spectra of substituted benzenes: II. Seven valence electron substituents. J. Electron. Spectrosc. Relat. Phenom. 1972, 1 (4), 355-370.
80. Albert, A., Serjeant, E.P., The Determination of Ionization Constants. Third Edition ed.; Chapman and Hall: London, 1984.
81. Winter, B.; Faubel, M., Photoemission from liquid aqueous solutions. Chem. Rev. 2006, 106 (4), 1176-1211.
82. Seidel, R.; Winter, B.; Bradforth, S. E., Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67 (1), 283-305.
83. Chang, P.-C.; Yu, Y.; Wu, Z.-H.; Lin, P.-C.; Chen, W.-R.; Su, C.-C.; Chen, M.-S.; Li, Y.-L.; Huang, T.-P.; Lee, Y.-y.; Wang, C. C., The Molecular Basis of the Antioxidant Capability of Glutathione Unraveled via Aerosol VUV Photoelectron Spectroscopy. The Journal of Physical Chemistry B 2016.
84. Wang, G.; Zhang, R.; Gomez, M. E.; Yang, L.; Levy Zamora, M.; Hu, M.; Lin, Y.; Peng, J.; Guo, S.; Meng, J.; Li, J.; Cheng, C.; Hu, T.; Ren, Y.; Wang, Y.; Gao, J.; Cao, J.; An, Z.; Zhou, W.; Li, G.; Wang, J.; Tian, P.; Marrero-Ortiz, W.; Secrest, J.; Du, Z.; Zheng, J.; Shang, D.; Zeng, L.; Shao, M.; Wang, W.; Huang, Y.; Wang, Y.; Zhu, Y.; Li, Y.; Hu, J.; Pan, B.; Cai, L.; Cheng, Y.; Ji, Y.; Zhang, F.; Rosenfeld, D.; Liss, P. S.; Duce, R. A.; Kolb, C. E.; Molina, M. J., Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National Academy of Sciences 2016, 113 (48), 13630-13635.
85. McNeill, V. F., Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environmental Science & Technology 2015, 49 (3), 1237-1244.
86. Palmer, M. H.; Moyes, W.; Speirs, M.; Ridyard, J. N. A., The electronic structure of substituted benzenes; ab initio calculations and photoelectron spectra for phenol, the methyl- and fluoro-derivatives, and the dihydroxybenzenes. Journal of Molecular Structure 1979, 52, 293-307.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code