Responsive image
博碩士論文 etd-0811117-150540 詳細資訊
Title page for etd-0811117-150540
論文名稱
Title
利用兆赫波時間解析系統研究砷化鎵鋁二維電子氣之光學特性
The study of optical properties of AlGaAs two-dimensional electron gas using terahertz time domain spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-09-11
關鍵字
Keywords
折射率、德汝德模型、砷化鎵鋁異質結構、兆赫波時間解析系統、載子遷移率、載子濃度、導電率
two-dimensional electron gas, AlGaAs heterojunction, mobility, Drude model, Terahertz time domain spectroscopy, carrier concentration, conductivity, refractive index
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
在本論文中,我們使用兆赫波時間解析系統(Terahertz Time-Domain Spectroscopy, THz-TDS)來研究兩種不同寬度間隔(Spacer Layer)的砷化鎵鋁二維電子氣(AlGaAs Two-Dimensional Electron Gas, 2DEG)的異質結構,並且利用夜態氮(Liquid Nitrogen)來降溫,測量了五種不同溫度下的兆赫波訊號,並計算出兩種不同寬度間隔的複數折射率(Complex Refractive Index)與複數導電率(Complex Conductivity)。最後我們以德汝德模型(Drude Model)對實驗數據做擬合(Fitting),並計算出載子生命週期(Life Time)、載子濃度(Carrier Concentration)和載子遷移率(Carrier Mobility)。發現砷化鎵鋁二維電子氣隨著溫度上升載子遷移率與載子生命週期有下降的趨勢,載子濃度隨著溫度的上升而變小,且在較薄的寬度間隔載子濃度大於較厚的寬度間隔。
Abstract
In this thesis, we have studied the two different spacer layer AlGaAs/GaAs heterojunction (two-dimensional electron gas, 2DEG) by using Terahertz Time-Domain Spectroscopy(THz-TDS). In different temperature, we calculate the complex refractive index and complex conductivity. We use Drude model to obtain the parameters of carrier life time, carrier concentration and carrier mobility by fitting experiment data. We found that the carrier mobility and life time will decrease when the temperature rising. However the carrier concentration will decrease when the temperature rising.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 vi
第一章 導論 1
1-1前言 1
1-2砷化鎵鋁二維電子氣介紹 1
1-3兆赫波的發展 3
1-4產生兆赫波方式 5
1-5文獻探討-兆赫波之相關研究 6
第二章 實驗原理 10
2-1光電導偶極天線產生及偵測兆赫波原理 10
2-2光電導偶極天線產生及偵測兆赫波原理推導 10
2-3偵測兆赫波方法以及推導 14
2-4實驗數據分析原理 16
第三章 實驗系統架設 21
3-1實驗光路架設 21
3-2 Mai Tai Laser以及PC-antenna 23
3-3 鎖相放大器(Lock-in,SR850) 25
3-4 Balance Detector 26
第四章 樣品介紹與實驗結果 27
4-1實驗樣品介紹 27
4-2實驗結果 28
第五章 結論 56
參考資料 57
參考文獻 References
B. B. Hu, X. C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals”, Appl. Phys. Lett. 56, 506 (1990).
M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics. 1, 97 (2007).
A. Rice, Y. Jin, X.-F. Ma, X.-C. Zhang, D. Bliss, J. Perkin, and M. Alexander, “Terahertz optical rectification from (110) zinc-blende crystals”, Appl. Phys. Lett. 64, 1324 (1994).
R. Oberhuber, G. Zandler, and P. Vogl, “Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors”, Appl. Phys. Lett. 73, 818 (1998).
Y. Zhang and J. Singh, “Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor”, J. Appl. Phys. 85, 587 (1999).
M. Shur, “GaAs Devices and Circuits”, (1986).
B. E. Foutz, L. F. Eastman, U. V. Bhapkar, and M. S. Shur, “Comparison of high field electron transport in GaN and GaAs”, Appl. Phys. Lett. 70, 2849 (1997).
O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures”, J. Appl. Phys. 87, 334 (2000).
X.-C. Zhang, “Introduction to THz Wave Photonics”, Springer, (2010).
G. Mourou, C. V. Stancampiano, A. Antonetti, and A. Orszag, “Picosecond microwave pulses generated with a subpicosecond laser‐driven semiconductor switch”, Appl. Phys. Lett. 39, 295 (1981).
D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles”, Appl. Phys. Lett. 45, 284 (1984).
N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4THz of N- and P-type GaAs using THz time-domain spectroscopy”, Appl. Phys. Lett. 61, 840 (1992).
J. T. Darrow, X.-C. Zhang, D. H. Auston, and J. D. Morse , “Saturation properties of large-aperture photoconducting antennas”, IEEE. 28, 6 (1992).
Q. Wu and X. C. Zhang, “Free‐space electro‐optic sampling of terahertz beams”, Appl. Phys. Lett. 67, 3523 (1995).
Q. Wu and X. C. Zhang, “Broadband detection capability of ZnTe electro‐optic field detectors”, Appl. Phys. Lett. 68, 2924 (1996).
Q. Wu, T. D. Hewitt, and X. C. Zhang, “Two‐dimensional electro‐optic imaging of THz beams”, Appl. Phys. Lett. 69, 1026 (1996).
Q. Wu and X. C. Zhang, “Ultrafast electro‐optic field sensors”, Appl. Phys. Lett. 68, 1604 (1996).
L. Duvillaret, F. Garet, and J. L. Coutaz, “A Reliable Method for Extraction of Material Parameters in Terahertz Time-Domain Spectroscopy”, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
K. Liu, A. Krotkus, K. Bertulis, J. Xu, and X.-C. Zhang, “Terahertz radiation from n-type GaAs with Be-doped low-temperature-grown GaAs surface layers”, J. Appl. Phys. 94, 3651 (2003).
M. A. Mohamed, P. T. Lam, and N. Otsuka, “Non-equilibrium critical point in Be-doped low-temperature-grown GaAs”, J. Appl. Phys. 113, 053504 (2013).
W. Zhang, Abul K. Azad and D. Grischkowsky, “Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN”, Appl. Phys. Lett. 82, 2841 (2003).
Zhen Zhou, An-Tao Chen, Li-Shuang Feng, Xiang-Jun Xin, and Chong-Xiu Yu, “Terahertz generation and detection setup based on pump-probe scheme”, Microw. Opt. Technol. Lett. 51, 1617 (2009).
S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure”, Appl. Phys. Lett. 96, 091101 (2010).
M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Low-temperature grown GaAs heterojunction metal-semiconductor-metal photodetectors improve speed and efficiency”, Appl. Phys. Lett. 99, 203502 (2011).
Jingbo Liu, Rajind Mendis, Daniel M. Mittleman and Naokazu Sakoda, “A tapered parallel-plate-waveguide probe for THz near-field reflection imaging”, Appl. Phys. Lett. 100, 031101 (2012).
Minjie Wang, Robert Vajtai, Pulickel M. Ajayan, and Junichiro Kono, “Electrically tunable hot-silicon terahertz attenuator”, Appl. Phys. Lett. 105, 141110 (2014).
X.‐C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics”, J. Appl. Phys. 71, 326 (1992).
Tsung-Hsing Yu and Kevin F. Brennan, “Theoretical study of the two-dimensional electron mobility in strained III-nitride heterostructures” J. Appl. Phys. 89, 7 (2001).
M.B.M. Rinzan, A.G.U. Perera, S.G. Matsik, H.C. Liu, M. Buchanan, G. von Winckel, and A. Stintz, S. Krishna, “Terahertz absorption in AlGaAs films and detection using heterojunctions”, Infrared Physics & Technology. 47, (2005).
Z. G. Hu, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, G. Von Winckel, A. Stintz, and S. Krishna, “Optical characterizations of heavily doped p-type AlxGa1−xAs and GaAs epitaxial films at terahertz frequencies”, J. Appl. Phys. 97, 093529 (2005).
N. A. Kabir, Y. YoonJ. R. Knab, J.-Y. Chen, A. G. MarkelzJ. L. RenoY. Sadofyev, S. Johnson, Y.-H. ZhangJ. P. Bird, “Terahertz transmission characteristics of high-mobility GaAs and InAs twodimensional-electron-gas systems”, Appl. Phys. Lett. 89, 132109 (2006).
Xiangfeng Wang, David J. Hilton, Lei Ren, Daniel M. Mittleman, Junichiro Kono, and John L. Reno, “Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas”, Opt. Lett. Vol. 32, 13, (2007).
Emine Ozturk, “Linear and total intersubband transitions in the step-like GaAs/GaAlAs asymmetric quantum well as dependent on intense laser field”, Eur. Phys. J. Plus, 130, (2015).
Yanzhang Lin, Haizi Yao, Zhiying Ren a, Ying Chen a, and Xiangfeng Wang, “Dynamic conductivity of an InAs two-dimensional electron gas measured using terahertz time-domain spectroscopy”, Opt. Materials. 69, (2017).
D G Hayes, C P Allford, G V Smith, C McIndo, L A Hanks, A M Gilbertson, L F Cohen, S Zhang, E M Clarke and P D Buckle, “Electron transport lifetimes in InSb/Al1-xInxSb quantum well 2DEGs”, Semicond. Sci. Technol. 32, (2017).
Yun-Shik Lee, “Principles of Terahertz Science and Technology”, Springer, (2008).
Jennifer A. Bardwell and Michael J. Dignam, “Extensions of the Kramers–Kronig transformation that cover a wide range of practical spectroscopic applications”, The Journal of Chemical Physics, 83, 5468 (1985).
B. Harbecke, I. Physikalisches Institut der Rheinisch-Westfalischen Technischen Hochschule Aachen, D-5100 Aachen, Fed. Rep. Germany, “Application of Fourier's Allied Integrals to the Kramers-Kronig Transformation of Reflectance Data”, Appl. Phys. Lett. A 40, 151 (1986).
H. Tuononen, E. Gornov, J. A. Zeitler, J. Aaltonen, and K.-E. Peiponen, “Using modified Kramers–Kronig relations to test transmission spectra of porous media in THz-TDS”, Opt. Lett. Vol. 35, 5 (2010).
X. Zou, M. He, D. Springer, D. Lee, S. K. Nair, AIP Advances, 2, 012120 (2012).
Elmer Estacio, Nobuhiko Sarukura, Carlito Ponseca Jr., Armando Somintac, Michelle Bailon-Somintac, Alipio Garcia, and Arnel Salvador, “Transverse magnetic field polarity effects on the terahertz radiation from GaAs/AlGaAs modulation-doped heterostructures with varying AlGaAs spacer-layer thickness”, J. Appal. Phys, 104, 073506 (2008).
E. Estacio, M. Bailon, A. Somintac, R. Sarmiento, and A. Salvador, “Observation of high junction electric fields in modulation-doped GaAs/AlGaAs heterostructures by room temperature photoreflectance spectroscopy”, J. Appal. Phys, 91, 3717 (2002).
J. S. Blakemore, “Semiconducting and other major properties of gallium arsenide”, J. Appal. Phys, 53, 1 (1982).
S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination andempirical modeling”, J. Appal. Phys, 87 (2000).
D. T. Morelli and J. P. Heremans, “Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors”, Phys. Rev. B 66, 195304 (2002).
Paul D. Cunningham, “Accessing Terahertz Complex Conductivity Dynamics in the Time-Domain”, IEEE J. 3, 4 (2013).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.133.228
論文開放下載的時間是 校外不公開

Your IP address is 18.119.133.228
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code