Responsive image
博碩士論文 etd-0811117-210131 詳細資訊
Title page for etd-0811117-210131
論文名稱
Title
探討非方向性電磁鋼片等溫退火之微結構與集合組織之研究
Investigation of the Microstructure and Texture Evolution during Isothermal Annealing in a Non-oriented Electrical Steel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
152
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-24
繳交日期
Date of Submission
2017-09-11
關鍵字
Keywords
等溫退火、再結晶、背向散射電子繞射術、集合組織、非方向性電磁鋼片、持溫時間
texteure, recrystallization, EBSD, non-oriented electrical steel, Annealing time, isothermal annealing
統計
Statistics
本論文已被瀏覽 5647 次,被下載 0
The thesis/dissertation has been browsed 5647 times, has been downloaded 0 times.
中文摘要
本研究主要探討非方向性電磁鋼片在等溫退火之微結構及集合組織之變化。將已經熱軋並且冷軋量為85%之試片,於500℃至800℃退火一分鐘後,將冷軋及退火之試片分別研磨至原厚度之99%及50%,量測維式硬度值,並選擇等溫退火溫度,再以X-光繞射(X-ray diffraction, XRD)極圖分析其巨觀集合組織演化。
選定初始再結晶之溫度範圍後,以各個退火溫度下並持溫不同時間,使用XRD極圖分析試片下表層及中心層巨觀集合組織之差異。並以背向散射電子繞射(electron backscattered diffraction, EBSD)分析由試片中心層至表層之微結構以及集合組織之分佈情形。
在巨觀集合組織分析下發現,於600℃及620℃之等溫退火實驗中,{111}<110>方位之體積分率下降趨勢不同:於較高溫之等溫退火下,{111}<110>方位之體積分率下降較快。於退火溫度620℃並持溫三分鐘至六分鐘時,Cube方位之體積分率於表層有明顯之增加情形,且將持溫時間增加至三小時以後,試片表層之Cube方位之體積分率也有明顯之增加,但Rotated Cube方位之強度於短時間內之持溫下,其強度並沒有明顯之改變。而Goss方位之體積分率則是於600℃之等溫退火中增加較明顯:實驗發現於退火600℃並持溫十分鐘及一小時以後,Goss方位之體積分率有明顯之增加。{111}<112>方位之體積分率於600℃及620℃都有一先降後升之趨勢;於580℃之等溫退火中,{111}<112>方位之體積分率則是於持溫四十八小時後有明顯之下降。
於微觀之角度分析下,可以發現隨著退火持溫時間之增加,其集合組織之演化情形與巨觀下之分析類似。較不同的是於620℃之等溫退火下,Cube方位之面積分率在持溫九分鐘後達到最大,而{111}<112>方位之面積分率則是在持溫時間達到三小時有下降之情形出現。另外,α-fiber長軸狀變形晶粒之消耗情形大致上有兩種型式:其一為鄰近之再結晶晶粒之晶界會傾向往α-fiber晶粒內部移動,另外則為SIBM (Strain Induced Boundary Migration)之形式。
以預測之方式預測再結晶之成核點,可以發現預測後所得之ODF與等溫退火後所得出的再結晶晶粒之ODF方位非常相近,由此可推測等溫退火下,方位成核之機制所造成之影響較大。
另外,與等時退火(isochronal annealing)進行比較後發現,發現各個重要集合組織之面積分率、所占再結晶百分比之比例及晶粒大小隨再結晶比例改變之分佈情形有些微差異,此可顯示於再結晶初期之溫度進行等溫退火實驗,回復所造成之效應確實會影響集合組織之演化。
Abstract
The aim of this work is to understand the isothermal annealing behavior of a 2.54 wt% Si non-oriented electrical steel, which was previously cold rolled to a 85% rolling reduction. Isothermal experiments were carried out at three different temperature, 580°C, 600°C and 620°C respectively, and hold with different period of annealing time. The effect of annealing time on the microstructures and textures of the specimens was investigated.
The macrotextures were analyzed by X-ray diffraction (XRD) pole figures measurements. The results shows that the intensities of {111}<110> of the specimens annealed at 620°C decreases faster than the ones of the specimens annealed at 600°C. The Cube intensity appears after annealing 620°C for 3, 6 minutes and 3 hours. But Rotated cube remains with increasing annealing time. The Goss intensity increases apparently after annealing 600℃ for 10 minutes and 1 hour. The {111}<112> intensity decreases first and then increases at 600℃ and 620℃ isothermal experiment. At 580℃ isothermal experiment, the {111}<112> intensity decreases with 48 hours holding time.
Ex-situ experiments were carried out by the electron backscattered diffraction (EBSD) to analyze the microstructures and microtextures. The results show that after annealing 620℃ for 9 minutes, the are fraction of Cube become the largest, the area fraction of {111}<112> decreases apparently after 620℃ for 3 hours. When the annealing time is increased, there are two ways to consume the α-fiber grain. The first one is boundaries of recrystallized grains move toward to the interior of α-fiber grains, the second is the SIBM.
Predicting the potential recrystallization nuclei find that the isothermal experiment carry out orientation nucleation.
Comparing to isothermal annealing and isochronal annealing, the area fraction, grain size and the ratio of recrystallized grains in four texture component, Cube, Goss, {111}<110>, and {111}<112>, show that the recovery process during the isothermal annealing effect on the texture evolution.
目次 Table of Contents
摘要……………………………………………………………………………………i
Abstract……………………………………………………….………………………iii
目錄……………………………………………………………………………………v
表目錄……………………………….………………………………………………viii
圖目錄…………………………...……………………………………………………ix
第一章 前言……………………..……………………………………………………1
第二章 文獻回顧…………………………………..…………………………………2
2-1退火…………………………………………………………………………..2
2-1-1回復…………………………………………………………………..3
2-1-2再結晶………………………………………………………………..4
2-2集合組織…………………….……………………………………………….5
2-2-1極圖…………………………………………………………………..5
2-2-2 Orientation Distribution Function (ODF) 與 Euler space…………..6
2-3 非方向性電磁鋼片重要之集合組織……………………………………...7
2-3-1 熱軋集合織……...…………………………………………………7
2-3-2 冷軋集合組織………………..….…………………………………8
2-3-3退火對電磁鋼片集合組織之影響…………………………………8
2-3-4 非方向性電磁鋼片退火之結構演化………………………….......10
2-4等溫退火…………………………………………………………………....10
2-4-1 等溫退火對低碳鋼之性質及微結構影響………………………...10
2-4-2儲存能差異對等溫退火之影響……………………………………10
2-4-3再結晶動力學………………………………………………………11
第三章 研究目的……………………………………………………………………12
第四章 實驗方法與步驟……………………………………………………………13
4-1實驗樣品……………………………………………………………………13
4-2實驗步驟……………………………………………………………………13
4-3特性分析……………………………………………………………………14
4-3-1 X-ray繞射儀(XRD)之分析………………………………………...14
4-3-2微硬度測量…………………………………………………………15
4-3-3 EBSD量測……………………………...…………………………..15
第五章 實驗結果……………………………………………………………………16
5-1 退火溫度…………………………………………………………...............16
5-1-1微硬度測試…………………………………………………………16
5-1-2 巨觀集合組織之觀察……………………………………………...16
5-2 580˚C之等溫退火………………………………………………………….17
5-2-1 巨觀角度之分析…………………………………………………...18
5-2-2 微觀角度之分析…………………………………………………...19
5-3 600˚C下之等溫退火…………………………………………………...20
5-3-1巨觀下之分析…………………………………………………........20
5-3-2微觀下之分析…………………………………………………........21
5-4 620˚C下之等溫退火…………………………………………………...24
5-4-1 巨觀下之分析………………………………………………….......24
5-4-2 微觀下之分析………………………………………………….......26
第六章 結果與討論…………………………………………………………………32
6-1集合組織於不同持溫時間下之演化情形…………………………………32
6-1-1 α-fiber / Rotated cube……………………………………………….32
6-1-2 {111}<112>與{111}<110>之晶粒……….…………...……………32
6-1-3 Cube及Goss之晶粒……………………………………………….34
6-1-4 各個集合組織之消長情形………………………………………...36
6-2等溫退火之動力學情形……………………………………………………38
6-3 再結晶之預測情形………………………………………………………...41
6-4 等時退火及等溫退火實驗之比較………………………………………...41
第七章 結論……………..…………………………………………………………..45
第八章 參考文獻……………………………………………………………………46
附錄…………………………………………………………………………………119
參考文獻 References
[1] J. K. Kim, D. N. Lee, and Y. M. Koo, "The evolution of the Goss and Cube textures in electrical steel," Materials Letters, vol. 122,
pp. 110, 2014.
[2] J. William D. Callister and D. G. Rethwisch, "Materials Science and Engineering: An Introduction, 9th Edition," 2013.
[3] J.-T. Park, Development of annealing texture in nonoriented electrical steels: Department of Mining, Metals and Materials
Engineering, 2002.
[4] M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez, "Effect of stored energy and recovery on the overall recrystallization
kinetics of a cold rolled low carbon steel," Materials Science and Engineering: A, vol. 485, pp. 200, 2008.
[5] Z. Liu, R. O. Olivares, Y. Lei, C. I. Garcia, and G. Wang, "Microstructural characterization and recrystallization kinetics modeling
of annealing cold-rolled vanadium microalloyed HSLA steels," Journal of Alloys and Compounds, vol. 679, pp. 293, 2016.
[6] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles 4th Edition, 2010.
[7] J. D. Verhoeven, Fundamentals of Physical Metallurgy 1st Edition, 1934.
[8] J. E. Bailey and P. B. Hirsch, "The recrystallization process in some polycrystalline metals," Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences, vol. 267, pp. 11, 1962.
[9] J. C. Li, "Possibility of subgrain rotation during recrystallization," Journal of Applied Physics, vol. 33, pp. 2958, 1962.
[10] B. D. Cullity and S. R. Stock, Elements of x-ray diffraction Addison-Wesley Publishing Company, Inc., 1956.
[11] V. Randle and O. Engler, "Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping," 2000.
[12] H.-J. Bunge, "Zur darstellung allgemeiner texturen," Zeitschrift fur metallkunde, vol. 56, pp. 872, 1965.
[13] L. Kestens and S. Jacobs, "Texture Control During the Manufacturing of Nonoriented Electrical Steels," Texture, Stress, and
Microstructure, vol. 2008, 2008.
[14] D. Raabe and K. Lüucke, "Textures of ferritic stainless steels," Materials science and technology, vol. 9, pp. 302, 1993.
[15] J.-T. Park and J. A. Szpunar, "Evolution of recrystallization texture in nonoriented electrical steels," Acta Materialia, vol. 51, pp.
3037, 2003.
[16] D. Raabe, "Simulation of rolling textures of b.c.c, metals considering grain interactions and crystallographic slip on {110}, {112} and {123} planes " Materials Science and Engineering A, vol. 197, pp. 31, 1995.
[17] K. Ushioda and W. B. Hutchinson, "Role of Shear Bands in Annealing Texture Formation in 3%Si–Fe(111)[112] Single Crystals," ISIJ Int, vol. 29, p. 862, 1989.
[18] B. Hutchinson, "Deformation microstructures and textures in steels," Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, vol. 357, pp. 1471, 1999.
[19] A. Martı́nez-de-Guerenu, F. Arizti, M. Dı́az-Fuentes, and I. Gutiérrez, "Recovery during annealing in a cold rolled low carbon
steel. Part I: Kinetics and microstructural characterization," Acta Materialia, vol. 52, pp. 3657, 2004.
[20] F. J. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, second edition. University of New South
Wales, Australia and University of Manchester Institute of Science and Technology, UK, 2004.
[21] H. Magnusson, D. J. Jensen, and B. Hutchinsson, "Growth rates for different texture components during recrystallization of IF
steel," Scripta Materialia, vol. 44, pp. 435, 2001.
[22] 徐瑋志, “極低碳鋼變形組織非均勻性與再結晶集合組織演化之研究” 2016, 國立中山大學材料與光電科學學系博士論文
[23] 林冠豪, “1.24 wt.%矽與2.54 wt.%矽非方向性電磁鋼片之冷軋與退火集合組織及磁性質研究” 2017 國立中山大學材料與光電科學學
系碩士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.142.115
論文開放下載的時間是 校外不公開

Your IP address is 3.14.142.115
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code